OFFSET
0,6
FORMULA
T(n,k) = Sum_{i=0..k-1} C(k-1,i)*2^(n*i)*T(1,i)*T(n,k-1-i) for k>0 with T(n,0)=1, for n>=0.
Row e.g.f.s, R(n,x), satisfy:
(1) R'(n,x)/R(n,x) = R(n+1,x)^(2^n) with R(n,0) = 1;
(2) R(n,x) = R(n+m,x/2^m)^(2^m) for m >= -n.
EXAMPLE
Array begins:
1,1,2,7,41,406,7127,235147,15191966,1953128401,501361942127,...;
1,1,3,19,225,4801,185523,13298659,1815718305,481790947681,...;
1,1,5,61,1481,66361,5390285,803252341,224927827601,...;
1,1,9,217,10737,988561,164637369,49987302697,28333326990177,...;
1,1,17,817,81761,15269281,5149256177,3155353490257,...;
1,1,33,3169,638145,240072001,162919458273,200565037419169,...;
1,1,65,12481,5042561,3807826561,5184101454785,12792473234253121,...;
1,1,129,49537,40092417,60660860161,165425163421569,...;
1,1,257,197377,319751681,968467745281,5286172203486977,...;
1,1,513,787969,2554072065,15478671283201,169038775947894273,...;
1,1,1025,3148801,20416829441,247524381173761,5407342625815542785,...;
...
where row e.g.f.s begin:
R(0,x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 41*x^4/4! + 406*x^5/5! +...;
R(1,x) = 1 + x + 3*x^2/2! +19*x^3/3! +225*x^4/4! +4801*x^5/5! +...;
R(2,x) = 1 + x + 5*x^2/2! +61*x^3/3!+1481*x^4/4!+66361*x^5/5! +...;
...
Row e.g.f.s satisfy: R(n+1,x)^(2^n) = d/dx log( R(n,x) ):
R(1,x)^1 = d/dx log(1+x +2*x^2/2! +7*x^3/3! +41*x^4/4! +...);
R(2,x)^2 = d/dx log(1+x +3*x^2/2! +19*x^3/3! +225*x^4/4! +...);
R(3,x)^4 = d/dx log(1+x +5*x^2/2! +61*x^3/3! +1481*x^4/4! +...);
R(4,x)^8 = d/dx log(1+x +9*x^2/2! +217*x^3/3! +10737*x^4/4! +...);
...
Examples of R(n,x) = R(n+m,x/2^m)^(2^m):
R(n-1,x) = R(n,x/2)^2 and R(n+1,x) = R(n,2x)^(1/2);
R(0,x) = R(n,x/2^n)^(2^n) and R(n,x) = R(0,2^n*x)^(1/2^n).
PROG
(PARI) {T(n, k)=if(k==0, 1, sum(i=0, k-1, 2^(n*i)*binomial(k-1, i)*T(1, i)*T(n, k-1-i)))}
(PARI) {T(n, k)=local(A=vector(n+k+2, j, 1+j*x)); for(i=0, n+k+1, for(j=0, n+k, m=n+k+1-j; A[m]=exp(intformal((A[m+1]+x*O(x^k))^(2^(m-1)))))); k!*polcoeff(A[n+1], k, x)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 19 2009
STATUS
approved