login
A159312
Logarithm derivative of the g.f. of A159311 such that a(n) = (n-1)*A159311(n) + 1.
1
1, 3, 13, 79, 601, 5331, 53173, 584543, 6994417, 90319843, 1250828701, 18488472751, 290534988745, 4837973367475, 85124614459333, 1578579744746431, 30781661041632481, 629806296977373891, 13494417486970553389
OFFSET
1,2
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 13*x^3/3 + 79*x^4/4 + 601*x^5/5 + 5331*x^6/2 +...
exp(L(x)) = 1 + x + 2*x^2 + 6*x^3 + 26*x^4 + 150*x^5 + 1066*x^6 +...
exp(L(x)) is the g.f. of A159311 where a(n) = (n-1)*A159311(n) + 1:
3 = 1*2 + 1, 13 = 2*6 + 1, 79 = 3*26 + 1, 601 = 4*15 + 1, 5331 = 5*1066 + 1.
PROG
(PARI) {a(n)=local(G003319=1-1/sum(k=0, n+1, k!*x^k+x^2*O(x^n))); n*polcoeff(log(x/serreverse(G003319)), n)}
CROSSREFS
Cf. A159311.
Sequence in context: A062872 A288954 A215915 * A355165 A213527 A261601
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 16 2009
STATUS
approved