login
A159301
Number of n-edge-colorings of the Flower Snark J_5.
1
0, 0, 0, 0, 3583795200, 395874805671360, 1738744950732226560, 1235572605759549550080, 271807359224690748211200, 26388455741825765694220800, 1401802907846088190887198720, 46874995581145572172724641920, 1086550353372774528536455618560
OFFSET
0,5
COMMENTS
The Flower Snark J_5 is a cubic graph on 20 vertices and 30 edges with edge chromatic number 4.
LINKS
Marc Timme, Frank van Bussel, Denny Fliegner, and Sebastian Stolzenberg, Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions, New J. Phys. 11 (2009), 023001.
Eric Weisstein's World of Mathematics, Edge Coloring.
Eric Weisstein's World of Mathematics, Flower Snark.
Index entries for linear recurrences with constant coefficients, signature (31, -465, 4495, -31465, 169911, -736281, 2629575, -7888725, 20160075, -44352165, 84672315, -141120525, 206253075, -265182525, 300540195, -300540195, 265182525, -206253075, 141120525, -84672315, 44352165, -20160075, 7888725, -2629575, 736281, -169911, 31465, -4495, 465, -31, 1).
FORMULA
a(n) = n^30 -60*n^29 + ... (see Maple program).
MAPLE
a:= n-> n^30 -60*n^29 +1750*n^28 -33060*n^27 +454764*n^26 -4854961*n^25 +41867565*n^24 -299720670*n^23 +1816540880*n^22 -9459103458*n^21 +42798016565*n^20 -169732938235*n^19 +594070747635*n^18 -1844689245281*n^17 +5101859382634*n^16 -12602061696493*n^15 +27845262245640*n^14 -55059880972850*n^13 +97345025180086*n^12 -153519740823868*n^11 +215073243442384*n^10 -265950300198200*n^9 +287573130360800*n^8 -268312812840064*n^7 +211957175072256*n^6 -137938984061952*n^5 +70986108216320*n^4 -27050740894720*n^3 +6769804881920*n^2 -831629027328*n: seq(a(n), n=0..13);
CROSSREFS
Sequence in context: A017638 A221557 A217003 * A113027 A094722 A283458
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Apr 09 2009
STATUS
approved