OFFSET
0,5
COMMENTS
The first Blanusa Snark is a cubic graph on 18 vertices and 27 edges with edge chromatic number 4.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: 10.1088/1367-2630/11/2/023001.
Weisstein, Eric W. "Blanusa Snarks".
Weisstein, Eric W. "Edge Coloring".
Index entries for linear recurrences with constant coefficients, signature (28, -378, 3276, -20475, 98280, -376740, 1184040, -3108105, 6906900, -13123110, 21474180, -30421755, 37442160, -40116600, 37442160, -30421755, 21474180, -13123110, 6906900, -3108105, 1184040, -376740, 98280, -20475, 3276, -378, 28, -1).
FORMULA
a(n) = n^27 -54*n^26 + ... (see Maple program).
MAPLE
a:= n-> n^27 -54*n^26 +1413*n^25 -23868*n^24 +292528*n^23 -2771950*n^22 +21130574*n^21 -133117276*n^20 +706470634*n^19 -3203528850*n^18 +12543744946*n^17 -42748437230*n^16 +127531683624*n^15 -334390244348*n^14 +772424405433*n^13 -1573143663006*n^12 +2822347194555*n^11 -4448140977042*n^10 +6127258124900*n^9 -7317667245560*n^8 +7485899667360*n^7 -6443746655392*n^6 +4545578587072*n^5 -2524167305856*n^4 +1033644121344*n^3 -276852249600*n^2 +36240795648*n: seq(a(n), n=0..15);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 09 2009
STATUS
approved