login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159069 a(n) = A159068(n)/n. 5
1, 2, 3, 6, 7, 23, 19, 66, 95, 255, 187, 1059, 631, 3227, 5243, 11426, 7711, 51887, 27595, 184911, 232887, 606627, 364723, 2807935, 2405183, 8671943, 10368079, 36873651, 18512791, 167268639, 69273667, 496472226, 551130063, 1856103039 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..1000

EXAMPLE

Row 6 of Pascal's triangle is 1,6,15,20,15,6,1. The greatest common divisors of n and each integer from 1 to 6 are gcd(1,6)=1, gcd(2,6)=2, gcd(3,6)=3, gcd(4,6)=2, gcd(5,6)=1, and gcd(6,6)=6. So a(6) = (1/6)*( 6*1 + 15*2 + 20*3 + 15*2 + 6*1 + 1*6) = 138/6 = 23. Note that each term of the sum in parentheses is a multiple of 6, so 138 is a multiple of 6.

MAPLE

A159068 := proc(n) add(binomial(n, k)*gcd(k, n), k=1..n) ; end: A159069 := proc(n) A159068(n)/n ; end: seq(A159069(n), n=1..80) ; # R. J. Mathar, Apr 06 2009

MATHEMATICA

Table[Sum[Binomial[n, k] GCD[k, n], {k, n}]/n, {n, 34}] (* Michael De Vlieger, Aug 29 2017 *)

PROG

(PARI) a(n) = sum(k=1, n, binomial(n, k) * gcd(k, n))/n; \\ Michel Marcus, Aug 30 2017

CROSSREFS

Cf. A159068.

Sequence in context: A352934 A073317 A064731 * A162681 A070301 A329294

Adjacent sequences: A159066 A159067 A159068 * A159070 A159071 A159072

KEYWORD

nonn

AUTHOR

Leroy Quet, Apr 04 2009

EXTENSIONS

Extended by R. J. Mathar, Apr 06 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)