|
|
A158709
|
|
Primes p such that p + ceiling(p/2) is prime.
|
|
14
|
|
|
2, 3, 7, 11, 19, 31, 47, 59, 67, 71, 127, 131, 151, 167, 179, 211, 239, 307, 311, 347, 379, 431, 439, 467, 479, 547, 571, 587, 607, 619, 631, 647, 727, 739, 787, 811, 839, 859, 907, 911, 967, 991, 1039, 1091, 1231, 1259, 1319, 1399, 1427, 1471, 1511, 1531, 1559
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Or, 2 along with primes p such that Sum_{x=1..p} (1 - (-1)^x*x) is prime. - Juri-Stepan Gerasimov, Jul 14 2009
Apart from the first term, primes of the form 4*k-1 such that 6*k-1 is also prime. - Charles R Greathouse IV, Nov 09 2011
If both p and q are in A158709 and p + q == 2 (mod 4), then A006370(A006370(p + q)) = A006370((p + q)/2) = 3*(p + q)/2 + 1 is the sum of the two primes p+ceiling(p/2) and q+ceiling(q/2). - Roderick MacPhee, Feb 23 2018
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
|
|
MATHEMATICA
|
lst={}; Do[p=Prime[n]; If[PrimeQ[Ceiling[p/2]+p], AppendTo[lst, p]], {n, 6!}]; lst
Select[Prime@ Range@ 250, PrimeQ@ Ceiling[3#/2] &] (* Vincenzo Librandi, Apr 15 2013 and slightly modified by Robert G. Wilson v, Feb 26 2018 *)
|
|
PROG
|
(PARI) forprime(p=2, 1e4, if(isprime(p+ceil(p/2)), print1(p", "))) \\ Charles R Greathouse IV, Nov 09 2011
(PARI) print1(2); forprime(p=3, 1e4, if(p%4==3&&isprime(p\4*6+5), print1(", "p))) \\ Charles R Greathouse IV, Nov 09 2011
|
|
CROSSREFS
|
Cf. A158708.
Sequence in context: A079739 A210394 A211203 * A180422 A055502 A003173
Adjacent sequences: A158706 A158707 A158708 * A158710 A158711 A158712
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Mar 24 2009
|
|
EXTENSIONS
|
Corrected by Charles R Greathouse IV, Mar 18 2010
|
|
STATUS
|
approved
|
|
|
|