OFFSET
1,1
COMMENTS
All terms are lesser of twin pairs.
The sequence is finite. In particular, there are no terms longer than 5 digits since 2*10^k for k=0,1,...,5 give all nonzero residues modulo 7, implying that adding 2 to some digit yields a multiple of 7. - Max Alekseyev, Apr 25 2010
EXAMPLE
2111 is in this sequence because all 2111, 4111, 2311, 2131 and 2113 are prime numbers.
32057 is in this sequence because all 32057, 52057, 34057, 32257, 32077 and 32059 are prime numbers.
MAPLE
Lton := proc(L) local i; add(op(i, L)*10^(i-1), i=1..nops(L)) ; end: isA158641 := proc(p) local pdgs, pplus, i ; if isprime(p) then pdgs := convert(p, base, 10) ; if convert(pdgs, set) intersect {8, 9} <> {} then false; else for i from 1 to nops(pdgs) do pplus := subsop(i=2+op(i, pdgs), pdgs) ; if not isprime(Lton(pplus)) then RETURN(false); fi; od: true; fi; else false; fi; end: for n from 1 do p := ithprime(n) ; if isA158641(p) then print(p) ; fi; od: # R. J. Mathar, Apr 16 2009
MATHEMATICA
spQ[p_]:=Max[IntegerDigits[p]]<8&&AllTrue[FromDigits/@Table[MapAt[ 2+#&, IntegerDigits[ p], n], {n, IntegerLength[p]}], PrimeQ]; Select[Prime[ Range[ 3500]], spQ] (* Harvey P. Dale, Nov 26 2022 *)
PROG
(PARI) test(p)=my(v=eval(Vec(Str(p)))); for(i=1, #v, if(v[i]>7, return(0))); for(i=0, #v-1, if(!isprime(p+2*10^i), return(0))); 1
forprime(p=2, 4e9, if(isprime(p+2) && test(p), print1(p", "))) \\ Charles R Greathouse IV, Sep 09 2009
(PARI) has(n)=if(vecmax(Set(digits(n)))>7, return(0)); for(i=0, #digits(n)-1, if(!isprime(n+2*10^i), return(0))); 1
select(has, primes(3438)) \\ Charles R Greathouse IV, Mar 11 2016
CROSSREFS
KEYWORD
nonn,full,fini,base
AUTHOR
Zak Seidov, Mar 23 2009
EXTENSIONS
Keywords full, fini from Max Alekseyev, Apr 25 2010
STATUS
approved