login
A158637
a(n) = 576*n^2 + 24.
2
24, 600, 2328, 5208, 9240, 14424, 20760, 28248, 36888, 46680, 57624, 69720, 82968, 97368, 112920, 129624, 147480, 166488, 186648, 207960, 230424, 254040, 278808, 304728, 331800, 360024, 389400, 419928, 451608, 484440, 518424, 553560, 589848, 627288, 665880, 705624
OFFSET
0,1
COMMENTS
The identity (48*n^2 + 1)^2 - (576*n^2 + 24)*(2*n)^2 = 1 can be written as A158638(n)^2 - a(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: -24*(1 + 22*x + 25*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 19 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(6)))*Pi/(2*sqrt(6)) + 1)/48.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(6)))*Pi/(2*sqrt(6)) + 1)/48. (End)
MATHEMATICA
24(24Range[0, 40]^2+1) (* or *) LinearRecurrence[{3, -3, 1}, {24, 600, 2328}, 40] (* Harvey P. Dale, May 23 2011 *)
PROG
(Magma) I:=[24, 600, 2328]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 17 2012
(PARI) for(n=0, 40, print1(576*n^2 + 24", ")); \\ Vincenzo Librandi, Feb 17 2012
CROSSREFS
Sequence in context: A009968 A041265 A042106 * A179059 A334281 A055359
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 23 2009
EXTENSIONS
Comment rephrased and redundant formula replaced by R. J. Mathar, Oct 19 2009
STATUS
approved