login
A158418
A triangle sequence from matrix polynomials of a three symbol type {0, 1, 2}: c(i,k)= Floor[Mod[i/2^k, 2]]; M(d)=Table[If[Sum[c(n, k)*c(m, k), {k, 0, d - 1}] == 0, 1, If[Sum[c(n, k)*c(m, k), {k, 0, d - 1}] == 1, 2, 0]], {n, 0, d - 1}, {m, 0, d - 1}].
0
1, 1, -1, 1, -3, 1, 1, -5, 5, -1, -3, 11, -4, -5, 1, -3, 17, -18, -2, 7, -1, 9, -39, 12, 35, -12, -7, 1, -27, 81, 54, -104, -28, 30, 7, -1, -135, 621, -459, -286, 266, 58, -43, -7, 1, -135, 891, -1269, 155, 652, -216, -119, 37, 9, -1, 405, -2133, 1431, 1986, -1677
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 5, 12, 24, 48, 115, 332, 1876, 3484, 8969,...}.
Example matrix:
M(4)={{1, 1, 1, 1},
{1, 2, 1, 2},
{1, 1, 2, 2},
{1, 2, 2, 0}}.
FORMULA
c(i,k)= Floor[Mod[i/2^k, 2]];
m(d)=Table[If[Sum[c(n, k)*c(m, k), {k, 0, d - 1}] == 0, 1, If[Sum[c(n, k)*c(m, k), {k, 0, d - 1}] == 1, 2, 0]], {n, 0, d - 1}, {m, 0, d - 1}];
out_(n,m)=coefficient(characteristicpolynomial(M(n),x),x)
EXAMPLE
{1},
{1, -1},
{1, -3, 1},
{1, -5, 5, -1},
{-3, 11, -4, -5, 1},
{-3, 17, -18, -2, 7, -1},
{9, -39, 12, 35, -12, -7, 1},
{-27, 81, 54, -104, -28, 30, 7, -1},
{-135, 621, -459, -286, 266, 58, -43, -7, 1},
{-135, 891, -1269, 155, 652, -216, -119, 37, 9, -1},
{405, -2133, 1431, 1986, -1677, -621, 543, 102, -61, -9, 1}
MATHEMATICA
Clear[c, b, a, An];
c[i_, k_] := Floor[Mod[i/2^k, 2]];
An[d_] := Table[If[Sum[c[n, k]*c[m, k], {k, 0, d - 1}] == 0, 1, If[Sum[c[n, k]*c[m, k], {k, 0, d - 1}] == 1, 2, 0]], {n, 0, d - 1}, {m, 0, d - 1}];
Table[An[n], {n, 1, 10}];
a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[ d], x], x], {d, 1, 10}]] ;
Flatten[a]
RowSum = Table[Apply[Plus, Abs[a[[n]]]], {n, 1, Length[a]}];
CROSSREFS
Sequence in context: A300966 A300923 A301531 * A124925 A073145 A245368
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Mar 18 2009
STATUS
approved