login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157623
781250n^2 - 455000n + 66249.
3
392499, 2281249, 5732499, 10746249, 17322499, 25461249, 35162499, 46426249, 59252499, 73641249, 89592499, 107106249, 126182499, 146821249, 169022499, 192786249, 218112499, 245001249, 273452499, 303466249, 335042499, 368181249
OFFSET
1,1
COMMENTS
The identity (781250*n^2-455000*n+66249)^2-(625*n^2-364*n+53)*(31250*n-9100)^2=1 can be written as a(n)^2-A157621(n)*A157622(n)^2=1.
FORMULA
a(1)=392499, a(2)=2281249, a(3)=5732499, a(n)=3*a(n-1)-3*a(n-2)+ a(n-3) [From Harvey P. Dale, Jul 11 2011]
G.f.: (392499+1103752*x+66249*x^2)/(1-x)^3 [From Harvey P. Dale, Jul 11 2011]
EXAMPLE
For n=1, a(1)=392499; n=2, a(2)=2281249; n=3, a(3)=5732499.
MATHEMATICA
Table[781250n^2-455000n+66249, {n, 25}] (* or *) LinearRecurrence[{3, -3, 1}, {392499, 2281249, 5732499}, 25] (* or *) CoefficientList[Series[ (-392499- 1103752 x-66249 x^2)/(x-1)^3, {x, 0, 25}], x] (* Harvey P. Dale, Jul 11 2011 *)
PROG
(Magma) I:=[392499, 2281249, 5732499]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n)=781250*n^2-455000*n+66249
CROSSREFS
Sequence in context: A346340 A345638 A346351 * A145228 A204628 A171439
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 03 2009
EXTENSIONS
Minor corrections by M. F. Hasler, Oct 08 2014
STATUS
approved