OFFSET
0,2
LINKS
M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
FORMULA
For formula see Maple code.
From Vaclav Kotesovec, Apr 07 2018: (Start)
For n > 0, a(n) = 2^(8*n) * 3^(6*n) * (12*n - 7) * Gamma(2*n - 7/6) * Gamma(2*n + 7/6) / (Pi * Gamma(2*n) * Gamma(2*n + 1)).
a(n) ~ 2^(8*n + 1) * 3^(6*n + 1) / Pi. (End)
MAPLE
af:=proc(a, n) mul(a+i, i=0..n-1); end; Aip:=n->(-12)^(6*n+1)*af(-1/12, n)*af(5/12, n)*af(7/12, n)*af(13/12, n)/((2*n-1)!*(2*n)!);
MATHEMATICA
Flatten[{1, Table[FullSimplify[2^(8*n) * 3^(6*n) * (12*n - 7) * Gamma[2*n - 7/6] * Gamma[2*n + 7/6] / (Pi * Gamma[2*n] * Gamma[2*n + 1])], {n, 1, 15}]}] (* Vaclav Kotesovec, Apr 07 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 28 2009
STATUS
approved