login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156289 Triangle read by rows: T(n,k) is the number of end rhyme patterns of a poem of an even number of lines (2n) with 1<=k<=n evenly rhymed sounds. 18
1, 1, 3, 1, 15, 15, 1, 63, 210, 105, 1, 255, 2205, 3150, 945, 1, 1023, 21120, 65835, 51975, 10395, 1, 4095, 195195, 1201200, 1891890, 945945, 135135, 1, 16383, 1777230, 20585565, 58108050, 54864810, 18918900, 2027025, 1, 65535, 16076985 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
T(n,k) is the number of partitions of a set of size 2*n into k blocks of even size [Comtet]. For partitions into odd sized blocks see A136630.
See A241171 for the triangle of ordered set partitions of the set {1,2,...,2*n} into k even sized blocks. - Peter Bala, Aug 20 2014
This triangle T(n,k) gives the sum over the M_3 multinomials A036040 for the partitions of 2*n with k even parts, for 1 <= k <= n. See the triangle A257490 with sums over the entries with k parts, and the Hartmut F. W. Hoft program. - Wolfdieter Lang, May 13 2015
REFERENCES
L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62.
L. Comtet, Advanced Combinatorics, Reidel, 1974, pages 225-226.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened)
Thomas Browning, Counting Parabolic Double Cosets in Symmetric Groups, arXiv:2010.13256 [math.CO], 2020.
FORMULA
Recursion: T(n,1)=1 for 1<=n; T(n,k)=0 for 1<=n<k;
T(n,k) = (2k-1)*T(n-1,k-1) + k^2*T(n-1,k) 1<k<=n.
Generating function for the k-th column of the triangle T(i+k,k):
G(k,x) = Sum(i=0,Infinity; T(i+k,k)*x^i) = Product(j=1,k; (2j-1)/(1-j^2*x).
Closed form expression for T(n,k):
T(n,k) = 2/(k!*2^k)*sum {j = 1..k} (-1)^(k-j)*binomial(2*k,k-j)*j^(2*n).
From Peter Bala, Feb 21 2011: (Start)
GENERATING FUNCTION
E.g.f. (including a constant 1):
(1)... F(x,z) = exp(x*(cosh(z)-1)
= sum{n>=0} R(n,x)*z^(2*n)/(2*n)!
= 1 + x*z^2/2! + (x + 3*x^2)*z^4/4! + (x + 15*x^2 + 15*x^3)*z^6/6 + ....
ROW POLYNOMIALS
The row polynomials R(n,x) begin
... R(1,x) = x
... R(2,x) = x + 3*x^2
... R(3,x) = x + 15*x^2 + 15*x^3.
The egf F(x,z) satisfies the partial differential equation
(2)... d^2/dz^2(F) = x*F + x*(2*x+1)*F' + x^2*F'',
where ' denotes differentiation with respect to x. Hence the row polynomials satisfy the recurrence relation
(3)... R(n+1,x) = x*{R(n,x) + (2*x+1)*R'(n,x) + x*R''(n,x)}
with R(0,x) = 1. The recurrence relation for T(n,k) given above follows from this.
(4)... T(n,k) = (2*k-1)!!*A036969(n,k).
(End)
EXAMPLE
The triangle begins
n\k|..1.....2......3......4......5......6
=========================================
.1.|..1
.2.|..1.....3
.3.|..1....15.....15
.4.|..1....63....210....105
.5.|..1...255...2205...3150....945
.6.|..1..1023..21120..65835..51975..10395
..
T(3,3) = 15. The 15 partitions of the set [6] into three even blocks are:
(12)(34)(56), (12)(35)(46), (12)(36)(45),
(13)(24)(56), (13)(25)(46), (13)(26)(45),
(14)(23)(56), (14)(25)(36), (14)(26)(35),
(15)(23)(46), (15)(24)(36), (15)(26)(34),
(16)(23)(45), (16)(24)(35), (16)(25)(34).
Examples of recurrence relation
T(4,3) = 5*T(3,2) + 9*T(3,3) = 5*15 + 9*15 = 210;
T(6,5) = 9*T(5,4) + 25*T(5,5) = 9*3150 + 25*945 = 51975.
T(4,2) = 28 + 35 = 63 (M_3 multinomials A036040 for partitions of 8 with 3 even parts, namely (2,6) and (4^2)). - Wolfdieter Lang, May 13 2015
MAPLE
T := proc(n, k) option remember; `if`(k = 0 and n = 0, 1, `if`(n < 0, 0,
(2*k-1)*T(n-1, k-1) + k^2*T(n-1, k))) end:
for n from 1 to 8 do seq(T(n, k), k=1..n) od; # Peter Luschny, Sep 04 2017
MATHEMATICA
T[n_, k_] := Which[n < k, 0, n == 1, 1, True, 2/Factorial2[2 k] Sum[(-1)^(k + j) Binomial[2 k, k + j] j^(2 n), {j, 1, k}]]
(* alternate computation with function triangle[] defined in A257490 *)
a[n_]:=Map[Apply[Plus, #]&, triangle[n], {2}]
(* Hartmut F. W. Hoft, Apr 26 2015 *)
CROSSREFS
Diagonal T(n, n) is A001147, subdiagonal T(n+1, n) is A001880.
2nd column variant T(n, 2)/3, for 2<=n, is A002450.
3rd column variant T(n, 3)/15, for 3<=n, is A002451.
Sum of the n-th row is A005046.
Sequence in context: A365162 A178657 A257490 * A368493 A095922 A263632
KEYWORD
easy,nonn,tabl
AUTHOR
Hartmut F. W. Hoft, Feb 07 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 20:08 EDT 2024. Contains 371963 sequences. (Running on oeis4.)