The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096162 Let n be a number partitioned as n = b_1 + 2*b_2 + ... + n*b_n; then T(n) = (b_1)! * (b_2)! * ... (b_n)!. Irregular triangle read by rows, T(n, k) for n >= 1 and 1 <= k <= A000041(n). 12
 1, 1, 2, 1, 1, 6, 1, 1, 2, 2, 24, 1, 1, 1, 2, 2, 6, 120, 1, 1, 1, 2, 2, 1, 6, 6, 4, 24, 720, 1, 1, 1, 1, 2, 1, 2, 2, 6, 2, 6, 24, 12, 120, 5040, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 6, 2, 4, 2, 24, 24, 6, 12, 120, 48, 720, 40320, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 6, 6, 2, 2, 2, 2, 6, 24, 6, 12, 4, 24, 120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The partitions of number n are grouped by increasing length and in reverse lexical order for partitions of the same length. This sequence is in the Abramowitz-Stegun ordering, see A036036. - Hartmut F. W. Hoft, Apr 25 2015 REFERENCES Abramowitz and Stegun, Handbook of Mathematical Functions, p. 831, column "M_1" divided by "M_3." LINKS M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. FORMULA T(n, k) = A036038(n,k) / A036040(n,k). Appears to be n! / A130561(n); e.g., 4! / (24,24,12,12,1) = (1,1,2,2,24). - Tom Copeland, Nov 12 2017 EXAMPLE Illustrating the formula: 1 1 2 1 3 6 1 4 6 12 24 ... A036038 1 1 1 1 3 1 1 4 3  6  1 ... A036040 so 1 1 2 1 1 6 1 1 2  2 24 ... this sequence. . From Hartmut F. W. Hoft, Apr 25 2015: (Start) The sequence as a structured triangle. The column headings indicate the number of elements in the underlying partitions. Brackets indicate groups of the products of factorials for all partitions of the same length when there is more than one partition.      1   2        3        4     5    6 1:   1 2:   1   2 3:   1   1        6 4:   1  [1 2]     2       24 5:   1  [1 1]    [2 2]     6    120 6:   1  [1 1 2]  [2 1 6]  [6 4]  24  720 The partitions, their multiplicities and factorial products associated with the five entries in row n = 4 are: partitions:         {4}, [{3, 1}, {2, 2}], {2, 1, 1}, {1, 1, 1, 1} multiplicities:      1,  [{1, 1},  2],     {1, 2},     4 factorial products:  1!, [1!*1!, 2!],      1!*2!,      4! (End) MATHEMATICA (* function a096162[ ] computes complete rows of the triangle *) row[n_] := Map[Apply[Times, Map[Factorial, Last[Transpose[Tally[#]]]]]&, GatherBy[IntegerPartitions[n], Length], {2}] triangle[n_] := Map[row, Range[n]] a096162[n_] := Flatten[triangle[n]] Take[a096162[9], 90] (* data *)  (*Hartmut F. W. Hoft, Apr 25 2015 *) PROG (SageMath) from collections import Counter def A096162_row(n):     h = lambda p: product(map(factorial, Counter(p).values()))     return [h(p) for k in (0..n) for p in Partitions(n, length=k)] for n in (1..9): print A096162_row(n) # Peter Luschny, Nov 01 2019 CROSSREFS Row sums in A096161. Row lengths in A000041. Cf. A036038, A036040, A130561. Sequence in context: A216917 A216919 A152656 * A306297 A053383 A181538 Adjacent sequences:  A096159 A096160 A096161 * A096163 A096164 A096165 KEYWORD easy,nonn,tabf AUTHOR Alford Arnold, Jun 20 2004 EXTENSIONS Edited and extended by Christian G. Bower, Jan 17 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 11:26 EST 2020. Contains 332233 sequences. (Running on oeis4.)