login
a(2n+2) = 6*a(2n+1), a(2n+1) = 6*a(2n) - 5^n*A000108(n), a(0)=1.
6

%I #15 Nov 09 2022 19:17:43

%S 1,5,30,175,1050,6250,37500,224375,1346250,8068750,48412500,290343750,

%T 1742062500,10450312500,62701875000,376177734375,2257066406250,

%U 13541839843750,81251039062500,487496738281250,2924980429687500,17549718554687500,105298311328125000

%N a(2n+2) = 6*a(2n+1), a(2n+1) = 6*a(2n) - 5^n*A000108(n), a(0)=1.

%C Hankel transform is 5^C(n+1,2). - _Philippe Deléham_, Feb 05 2009

%H G. C. Greubel, <a href="/A156195/b156195.txt">Table of n, a(n) for n = 0..1000</a>

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry2/barry73.html">A Note on a One-Parameter Family of Catalan-Like Numbers</a>, JIS 12 (2009) 09.5.4.

%F a(n) = Sum_{k=0..n} A120730(n,k)*5^k.

%F G.f.: (sqrt(1-20*x^2) +10*x -1)/(10*x*(1-6*x)). - _Philippe Deléham_, Feb 05 2009

%F (n+1)*a(n) = 6*(n+1)*a(n-1) + 20*(n-2)*a(n-2) - 120*(n-2)*a(n-3). - _R. J. Mathar_, Jul 21 2016

%p A156195 := proc(n)

%p option remember;

%p local nh;

%p if n= 0 then

%p 1;

%p elif type(n,'even') then

%p 6*procname(n-1);

%p else

%p nh := floor(n/2) ;

%p 6*procname(n-1)-5^nh*A000108(nh) ;

%p end if;

%p end proc: # _R. J. Mathar_, Jul 21 2016

%t CoefficientList[Series[(Sqrt[1-20x^2]+10x-1)/(10x(1-6x)),{x,0,30}],x] (* _Harvey P. Dale_, Oct 21 2016 *)

%o (Magma) [n le 3 select Factorial(n+3)/24 else (6*n*Self(n-1) + 20*(n-3)*Self(n-2) - 120*(n-3)*Self(n-3))/n: n in [1..30]]; // _G. C. Greubel_, Nov 09 2022

%o (SageMath)

%o def a(n): # a = A156195

%o if (n==0): return 1

%o elif (n%2==1): return 6*a(n-1) - 5^((n-1)/2)*catalan_number((n-1)/2)

%o else: return 6*a(n-1)

%o [a(n) for n in (0..30)] # _G. C. Greubel_, Nov 09 2022

%Y Cf. A000108, A001405, A120730, A151162, A151254, A151281, A156058.

%K nonn

%O 0,2

%A _Philippe Deléham_, Feb 05 2009

%E Corrected and extended by _Harvey P. Dale_, Oct 21 2016