OFFSET
0,1
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: 2*(4 - 7*x + 5*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A087475(n). - Bruno Berselli, Mar 13 2015
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=0} 1/a(n) = 1/16 + coth(2*Pi)*Pi/8.
Sum_{n>=0} (-1)^n/a(n) = 1/16 + cosech(2*Pi)*Pi/8. (End)
E.g.f.: 2*exp(x)*(4 + x + x^2). - Elmo R. Oliveira, Jan 17 2025
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {8, 10, 16}, 50] (* Vincenzo Librandi, Feb 22 2012 *)
2*Range[0, 50]^2+8 (* Harvey P. Dale, Mar 01 2018 *)
PROG
(PARI) a(n)=2*n^2+8 \\ Charles R Greathouse IV, Jan 11 2012
(Magma) [2*n^2+8: n in [0..50]]; // Vincenzo Librandi, Feb 22 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 31 2009
EXTENSIONS
Offset changed from 1 to 0 and added a(0)=8 by Bruno Berselli, Mar 13 2015
STATUS
approved