This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155084 A Catalan transform of [x^n](1/(1-2x-2x^2)) (A002605). 1
 1, 2, 8, 32, 132, 552, 2328, 9872, 42020, 179336, 766888, 3284272, 14081224, 60426576, 259490736, 1114965792, 4792924356, 20611174920, 88662405768, 381494338032, 1641837542232, 7067257125744, 30425523536592 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Hankel transform is 4^n. REFERENCES Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.- From N. J. A. Sloane, Oct 08 2012 LINKS FORMULA G.f.: 1/(1-2x*c(x)-2(x*c(x))^2), where c(x) is the g.f. of A000108. G.f.: 1/(1-2x-4x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-..... (continued fraction). a(n)=sum{k=0..n, (k/(2n-k))binomial(2n-k, n-k)*A002605(k)} (a(0)=1). a(n)= Sum_{k, 0<=k<=n} A039599(n,k)*A108411(k). [Philippe Deléham, Nov 15 2009] Apparently 3*n*a(n)  +6*(3-4*n)*a(n-1) +4*(11*n-18)*a(n-2) +8*(2*n-3)*a(n-3)=0. - R. J. Mathar, Oct 25 2012 CROSSREFS Cf. A101850. Sequence in context: A183895 A228921 A150829 * A322251 A150830 A150831 Adjacent sequences:  A155081 A155082 A155083 * A155085 A155086 A155087 KEYWORD easy,nonn AUTHOR Paul Barry, Jan 19 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 18:48 EST 2019. Contains 319251 sequences. (Running on oeis4.)