login
A154410
a(n) = 5*(3*6^n + 2^n)/2.
1
10, 50, 280, 1640, 9760, 58400, 350080, 2099840, 12597760, 75584000, 453498880, 2720983040, 16325877760, 97955225600, 587731271680, 3526387466240, 21158324469760, 126949946163200, 761699675668480, 4570198051389440, 27421188303093760
OFFSET
0,1
FORMULA
a(n) = 8*a(n-1) - 12*a(n-2).
a(n) = 6*a(n-1) - 10*2^(n-1).
a(n) = A154407(n+1) - A154407(n).
a(n) = 10*A090040(n).
G.f.: 10*(1-3*x)/((1-2*x)*(1-6*x)). - Jaume Oliver Lafont, Aug 30 2009
E.g.f.: (5/2)*( exp(2*x) + 3*exp(6*x) ). - G. C. Greubel, Sep 16 2016
MATHEMATICA
LinearRecurrence[{8, -12}, {10, 50}, 30] (* Harvey P. Dale, Apr 27 2018 *)
PROG
(Magma) [5*(3*6^n+2^n)/2: n in [0..30]]; // Vincenzo Librandi, Aug 07 2011
CROSSREFS
Sequence in context: A095687 A204272 A220149 * A060156 A000450 A124872
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jan 09 2009
EXTENSIONS
Entries corrected and extended by Paolo P. Lava, Jan 20 2009
Comments turned into formulas by R. J. Mathar, Sep 07 2009
STATUS
approved