login
A154361
a(n) = 250*n - 70.
6
-70, 180, 430, 680, 930, 1180, 1430, 1680, 1930, 2180, 2430, 2680, 2930, 3180, 3430, 3680, 3930, 4180, 4430, 4680, 4930, 5180, 5430, 5680, 5930, 6180, 6430, 6680, 6930, 7180, 7430, 7680, 7930, 8180, 8430, 8680, 8930, 9180
OFFSET
0,1
COMMENTS
The identity (1250*n^2 - 700*n + 99)^2 - (25*n^2 - 14*n + 2)*(250*n - 70)^2 = 1 can be written as A154359(n)^2 - A154357(n)*a(n)^2 = 1. See also the third comment in A154357.
FORMULA
G.f.: -10*(7 - 32*x)/(1-x)^2. - Bruno Berselli, Dec 13 2011
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 21 2012
E.g.f.: 10*(-7 + 25*x)*exp(x). - G. C. Greubel, Sep 15 2016
MATHEMATICA
LinearRecurrence[{2, -1}, {-70, 180}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
250*Range[0, 50]-70 (* Harvey P. Dale, Apr 09 2020 *)
PROG
(PARI) for(n=0, 50, print1(250*n - 70", ")); \\ Vincenzo Librandi, Feb 21 2012
(Magma) [250*n-70: n in [0..50]]; // Bruno Berselli, Sep 15 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, Jan 08 2009
EXTENSIONS
Offset changed and Librandi's comment rewritten by Bruno Berselli, Dec 13 2011
STATUS
approved