

A154363


Numbers from Bhargava's primeuniversality criterion theorem


4



2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 67, 73
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Bhargava's primeuniversality criterion theorem asserts that an integermatrix quadratic form represents all prime numbers if and only if it represents all numbers in this sequence.


REFERENCES

H. Cohen, Number Theory, Springer, 2007, page 313.
M.H. Kim, Recent developments on universal forms, Contemporary Math., 344 (2004), 215228.


LINKS

Table of n, a(n) for n=1..17.


CROSSREFS

A030050 (numbers from the 15 theorem), A030051 (numbers from the 290 theorem), A116582 (numbers from the 33 theorem)
Sequence in context: A127566 A103146 A329191 * A049555 A281295 A052042
Adjacent sequences: A154360 A154361 A154362 * A154364 A154365 A154366


KEYWORD

fini,full,nonn


AUTHOR

Scott Duke Kominers (kominers(AT)fas.harvard.edu), Jan 07 2009


STATUS

approved



