login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153127
a(n) = (2*n + 1)*(5*n + 6).
4
6, 33, 80, 147, 234, 341, 468, 615, 782, 969, 1176, 1403, 1650, 1917, 2204, 2511, 2838, 3185, 3552, 3939, 4346, 4773, 5220, 5687, 6174, 6681, 7208, 7755, 8322, 8909, 9516, 10143, 10790, 11457, 12144, 12851, 13578, 14325, 15092, 15879, 16686, 17513
OFFSET
0,1
FORMULA
a(n) = A153126(2*n+1) = A000566(2*(n+1)) - 1.
a(n) = a(n-1) + 20*n + 7 (with a(0)=6). - Vincenzo Librandi, Dec 27 2010
G.f.: (-6-15*x+x^2)/(-1+x)^3 - Harvey P. Dale, Jun 07 2021
Sum_{n>=0} 1/a(n) = 5/7 - sqrt(1+2/sqrt(5))*Pi/14 - sqrt(5)*log(phi)/14 - 5*log(5)/28 + 2*log(2)/7, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 23 2022
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: exp(x)*(6 + 27*x + 10*x^2).
a(n) = A005408(n)*A016861(n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
Table[(2n+1)(5n+6), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {6, 33, 80}, 50] (* Harvey P. Dale, Jun 07 2021 *)
PROG
(PARI) a(n)=(2*n+1)*(5*n+6) \\ Charles R Greathouse IV, Jun 17 2017
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Dec 20 2008
STATUS
approved