login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152834 Numbers of form 6k+1 that use only digits 2 and 3. 3
223, 2233, 2323, 3223, 22333, 23233, 23323, 32233, 32323, 33223, 222223, 223333, 232333, 233233, 233323, 322333, 323233, 323323, 332233, 332323, 333223, 2222233, 2222323, 2223223, 2232223, 2233333, 2322223, 2323333, 2332333, 2333233, 2333323, 3222223 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Equivalently, sequences of 2's and 3's, ending with 3, where the number of 2's is congruent to 2 mod 3. - Franklin T. Adams-Watters, Dec 14 2008

LINKS

Robert Israel, Table of n, a(n) for n = 1..340

Index entries for 10-automatic sequences.

MAPLE

(Maple program from Robert Israel:)

M:= proc(n) option remember; (map(t -> 2*10^n+t, M(n-1)) union map(t ->

3*10^n+t, M(n-1))) end proc;

M(0):= {2, 3};

select(t -> (t mod 6 = 1), `union`(seq(M(n), n=1..9)));

MATHEMATICA

Do[If[Union[IntegerDigits[6k+1]]=={2, 3}, Print[6k+1]], {k, 100000}]

Select[Flatten[Table[FromDigits/@Tuples[{2, 3}, n], {n, 7}]], Mod[#, 6]==1&] (* Harvey P. Dale, Aug 02 2015 *)

PROG

(PARI) is(n)=n%30==13 && Set(digits(n))==[2, 3] \\ Charles R Greathouse IV, Feb 15 2017

CROSSREFS

Subsequence of A152824.

Sequence in context: A253953 A205273 A205266 * A139233 A205265 A153165

Adjacent sequences:  A152831 A152832 A152833 * A152835 A152836 A152837

KEYWORD

nonn,base,easy

AUTHOR

Zak Seidov, Dec 14 2008

EXTENSIONS

Extended by Robert Israel, Dec 14 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 13:36 EDT 2017. Contains 290890 sequences.