The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152601 a(n) = Sum_{k=0..n} C(n+k,2k)*A000108(k)*3^k*2^(n-k). 4
 1, 5, 40, 395, 4360, 51530, 637840, 8163095, 107140360, 1434252230, 19507077040, 268796321870, 3744480010960, 52647783144980, 746145741252640, 10648007952942095, 152877753577617160, 2206713692628578030 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Hankel transform is 15^C(n+1,2). a(n) = A152600(n+1)/2. LINKS FORMULA a(n) = Sum_{k=0..n} A088617(n,k)*3^k*2^(n-k) = Sum_{k=0..n} A060693(n,k)*2^k*3^(n-k). - Philippe Deléham, Dec 10 2008 a(n) = Sum_{k=0..n} A090181(n,k)*5^k*3^(n-k). - Philippe Deléham, Dec 10 2008 a(n) = Sum_{k=0..n} A131198(n,k)*3^k*5^(n-k). - Philippe Deléham, Dec 10 2008 a(n) = Sum_{k=0..n} A133336(n,k)*(-2)^k*5^(n-k) = Sum_{k=0..n} A086810(n,k)*5^k*(-2)^(n-k). - Philippe Deléham, Dec 10 2008 G.f.: 1/(1-5x/(1-3x/(1-5x/(1-3x/(1-5x/(1-3x/(1-5x/(1-... (continued fraction). - Philippe Deléham, Nov 28 2011 Conjecture: (n+1)*a(n) +8*(-2*n+1)*a(n-1) +4*(n-2)*a(n-2)=0. - R. J. Mathar, Nov 24 2012 CROSSREFS Cf. A103211, A103210. Cf. A088617, A060693. Sequence in context: A220673 A130564 A124555 * A079158 A061633 A143437 Adjacent sequences:  A152598 A152599 A152600 * A152602 A152603 A152604 KEYWORD easy,nonn AUTHOR Paul Barry, Dec 09 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 23:57 EDT 2022. Contains 356016 sequences. (Running on oeis4.)