|
|
A152601
|
|
a(n) = Sum_{k=0..n} C(n+k,2k)*A000108(k)*3^k*2^(n-k).
|
|
4
|
|
|
1, 5, 40, 395, 4360, 51530, 637840, 8163095, 107140360, 1434252230, 19507077040, 268796321870, 3744480010960, 52647783144980, 746145741252640, 10648007952942095, 152877753577617160, 2206713692628578030
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Hankel transform is 15^C(n+1,2).
a(n) = A152600(n+1)/2.
|
|
LINKS
|
Table of n, a(n) for n=0..17.
|
|
FORMULA
|
a(n) = Sum_{k=0..n} A088617(n,k)*3^k*2^(n-k) = Sum_{k=0..n} A060693(n,k)*2^k*3^(n-k). - Philippe Deléham, Dec 10 2008
a(n) = Sum_{k=0..n} A090181(n,k)*5^k*3^(n-k). - Philippe Deléham, Dec 10 2008
a(n) = Sum_{k=0..n} A131198(n,k)*3^k*5^(n-k). - Philippe Deléham, Dec 10 2008
a(n) = Sum_{k=0..n} A133336(n,k)*(-2)^k*5^(n-k) = Sum_{k=0..n} A086810(n,k)*5^k*(-2)^(n-k). - Philippe Deléham, Dec 10 2008
G.f.: 1/(1-5x/(1-3x/(1-5x/(1-3x/(1-5x/(1-3x/(1-5x/(1-... (continued fraction). - Philippe Deléham, Nov 28 2011
Conjecture: (n+1)*a(n) +8*(-2*n+1)*a(n-1) +4*(n-2)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
|
|
CROSSREFS
|
Cf. A103211, A103210.
Cf. A088617, A060693.
Sequence in context: A220673 A130564 A124555 * A079158 A061633 A143437
Adjacent sequences: A152598 A152599 A152600 * A152602 A152603 A152604
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Paul Barry, Dec 09 2008
|
|
STATUS
|
approved
|
|
|
|