login
A152035
Expansion of g.f. (1-2*x^2)/(1-2*x-2*x^2).
3
1, 2, 4, 12, 32, 88, 240, 656, 1792, 4896, 13376, 36544, 99840, 272768, 745216, 2035968, 5562368, 15196672, 41518080, 113429504, 309895168, 846649344, 2313089024, 6319476736, 17265131520, 47169216512, 128868696064, 352075825152, 961889042432, 2627929735168, 7179637555200, 19615134580736
OFFSET
0,2
COMMENTS
Essentially same as A028860. - Philippe Deléham, Sep 21 2009
FORMULA
a(n) = 2*(a(n-1) + a(n-2)) for n >= 3. - Peter Luschny, Jan 03 2019
MAPLE
a := proc(n) option remember;
`if`(n < 3, [1, 2, 4][n+1], 2*(a(n-1) + a(n-2))) end:
seq(a(n), n=0..31); # Peter Luschny, Jan 03 2019
MATHEMATICA
f[n_] = 2^n*Product[(1 + 2*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; Table[FullSimplify[ExpandAll[f[n]]], {n, 0, 15}]
CoefficientList[Series[(1-2x^2)/(1-2x-2x^2), {x, 0, 40}], x] (* Harvey P. Dale, Sep 23 2014 *)
LinearRecurrence[{2, 2}, {1, 2, 4}, 40] (* Harvey P. Dale, May 12 2023 *)
PROG
(Magma) [1] cat [n le 2 select 2^n else 2*(Self(n-1) +Self(n-2)): n in [1..30]]; // G. C. Greubel, Sep 20 2023
(SageMath)
@CachedFunction
def a(n): # a = A152035
if n<3: return (1, 2, 4)[n]
else: return 2*(a(n-1) + a(n-2))
[a(n) for n in range(31)] # G. C. Greubel, Sep 20 2023
CROSSREFS
Cf. A028860. Row sums of A322942.
Sequence in context: A181329 A293007 A028860 * A026151 A025178 A231295
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Nov 20 2008
EXTENSIONS
Edited by N. J. A. Sloane, Apr 11 2009, based on comments from Philippe Deléham and R. J. Mathar
More terms from Philippe Deléham, Sep 21 2009
STATUS
approved