This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151833 Number of fixed 7-dimensional polycubes with n cells. 2
1, 7, 91, 1484, 27468, 551313, 11710328, 259379101, 5933702467, 139272913892, 3338026689018, 81406063278113, 2014611366114053, 50486299825273271 (list; graph; refs; listen; history; text; internal format)



G. Aleksandrowicz and G. Barequet, Counting d-dimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215-229.

G. Aleksandrowicz and G. Barequet, Counting polycubes without the dimensionality curse, Discrete Mathematics, 309 (2009), 4576-4583.

G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011.

Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf

R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275.

S. Luther and S. Mertens, Counting lattice animals in high dimensions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (9), 546-565.


Table of n, a(n) for n=1..14.


a(n) = A048668(n)/n. - Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A048668.


A048668 = Cases[Import["https://oeis.org/A048668/b048668.txt", "Table"], {_, _}][[All, 2]];

a[n_] := A048668[[n]]/n;

Array[a, 14] (* Jean-François Alcover, Sep 12 2019 *)


Cf. A001931, A048668, A151830-A151835.

Sequence in context: A191097 A234570 A133307 * A113372 A131940 A008542

Adjacent sequences:  A151830 A151831 A151832 * A151834 A151835 A151836




N. J. A. Sloane, Jul 12 2009


More terms from Gadi Aleksandrowicz (gadial(AT)gmail.com), Mar 21 2010

a(11)-a(14) from Luther and Mertens by Gill Barequet, Jun 12 2011



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 05:27 EST 2019. Contains 329217 sequences. (Running on oeis4.)