login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151830 Number of fixed 4-dimensional polycubes with n cells. 7
1, 4, 28, 234, 2162, 21272, 218740, 2323730, 25314097, 281345096, 3178474308, 36400646766, 421693622520, 4933625049464, 58216226287844, 692095652493483 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

G. Aleksandrowicz and G. Barequet, Counting d-dimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215-229.

G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011.

Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf

R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275.

S. Luther and S. Mertens, Counting lattice animals in high dimensions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (9), 546-565.

LINKS

Table of n, a(n) for n=1..16.

CROSSREFS

Cf. A001931, A151831, A151832, A151833, A151834, A151835.

Sequence in context: A046904 A030444 A093877 * A112113 A188266 A192625

Adjacent sequences:  A151827 A151828 A151829 * A151831 A151832 A151833

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jul 12 2009

EXTENSIONS

a(16) from Luther and Mertens by Gill Barequet, Jun 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 25 08:06 EDT 2018. Contains 303048 sequences. (Running on oeis4.)