login
A151556
Values of (n^5+47*n)/48 as n ranges over the numbers that are == +-1 mod 6.
0
1, 70, 357, 3366, 7748, 29597, 51604, 134113, 203475, 427344, 596471, 1094240, 1444702, 2413711, 3062718, 4778067, 5884949, 8712458, 10485145, 14894314, 17595816, 24172785, 28127672, 37588181, 43189063, 56391412, 64105419, 82063428, 92438690, 116334659
OFFSET
1,2
COMMENTS
((n^5+47n)/48)^2 is the sum of the squares of the n^2 integers from (n^4-24n^2-25)/48 to (n^4+24n^2-73)/48. For example, when n=5, 70^2 is the sum of the 25 squares of the integers from 0 to 24.
FORMULA
a(n) = a(n-1)+5*a(n-2)-5*a(n-3)-10*a(n-4)+10*a(n-5)+10*a(n-6)-10*a(n-7)-5*a(n-8)+5*a(n-9)+a(n-10)-a(n-11). [R. J. Mathar, May 21 2009]
G.f.: x*(1 +69*x +282*x^2 +2664*x^3 +2957*x^4 +7494*x^5 +2957*x^6 +2664*x^7 +282*x^8 +69*x^9 +x^10)/((1+x)^5*(x-1)^6). [R. J. Mathar, May 21 2009]
a(n) = ((2*n-1)*(81*n^4-162*n^3+144*n^2-63*n+58)+(135*n^4-270*n^3+210*n^2-75*n+26)*(-1)^n)/32. - Tani Akinari, Oct 25 2014
MATHEMATICA
With[{nn=20}, (#^5+47#)/48&/@Sort[Join[6Range[0, nn]+1, 6Range[nn]-1]]] (* Harvey P. Dale, Nov 15 2011 *)
PROG
(Magma) [((2*n-1)*(81*n^4-162*n^3+144*n^2-63*n+58)+(135*n^4-270*n^3+210*n^2-75*n+26)*(-1)^n)/32: n in [1..30]]; // Vincenzo Librandi, Oct 25 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved