

A151553


G.f.: (1 + x) * Prod_{ n >= 1} (1 + x^(2^n1) + x^(2^n)).


5



1, 2, 2, 2, 3, 4, 3, 2, 3, 4, 4, 5, 7, 7, 4, 2, 3, 4, 4, 5, 7, 7, 5, 5, 7, 8, 9, 12, 14, 11, 5, 2, 3, 4, 4, 5, 7, 7, 5, 5, 7, 8, 9, 12, 14, 11, 6, 5, 7, 8, 9, 12, 14, 12, 10, 12, 15, 17, 21, 26, 25, 16, 6, 2, 3, 4, 4, 5, 7, 7, 5, 5, 7, 8, 9, 12, 14, 11, 6, 5, 7, 8, 9, 12, 14, 12, 10, 12, 15, 17, 21, 26
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..16383
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n1)1) for n >= 2.]
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS


FORMULA

Recurrence: a(0)=1, a(1) = a(2) = 2; a(2^m1)=2 for m >= 2; a(2^m) = 3 for m >= 2; a(2^m2) = m for m >= 3; otherwise, for m >= 5, if m=2^i+j (0 <= j < 2^i  1), a(m) = a(j) + a(j+1).
a(n) = sum_{k >= 0, n+k odd} binomial(A000120(n+k),k); the sum may be restricted further to k <= 2*A000523(n+1) [based on Hagen von Eitzen's formula for A151552].


EXAMPLE

If formatted as a triangle:
.1,
.2,
.2,2,
.3,4,3,2,
.3,4,4,5,7,7,4,2,
.3,4,4,5,7,7,5,5,7,8,9,12,14,11,5,2,
.3,4,4,5,7,7,5,5,7,8,9,12,14,11,6,5,7,8,9,12,14,12,10,12,15,17,21,26,25,16,6,2,
.3,4,4,5,7,7,5,5,7,8,9,12,14,11,6,5,7,8,9,12,14,12,10,12,15,17,21,26,25,16,7
... 5,7,8,9,12,14,12,10,12,15,17,21,26,25,17,11,12,15,17,21,26,26,22,22,27,32,38,47,51,41,22,7,2,
.3,4,4,5,7,7,4,2, ...


MATHEMATICA

CoefficientList[Series[(1+x)Product[1+x^(2^n1)+x^2^n, {n, 10}], {x, 0, 100}], x] (* Harvey P. Dale, Jul 13 2019 *)


CROSSREFS

Cf. A139250, A151550, A151551, A151552.
Sequence in context: A308253 A286614 A023508 * A151714 A039644 A281945
Adjacent sequences: A151550 A151551 A151552 * A151554 A151555 A151556


KEYWORD

nonn,tabf


AUTHOR

N. J. A. Sloane, May 20 2009


STATUS

approved



