login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151548
When A160552 is regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., this is what the rows converge to.
16
1, 3, 5, 7, 5, 11, 17, 15, 5, 11, 17, 19, 21, 39, 49, 31, 5, 11, 17, 19, 21, 39, 49, 35, 21, 39, 53, 59, 81, 127, 129, 63, 5, 11, 17, 19, 21, 39, 49, 35, 21, 39, 53, 59, 81, 127, 129, 67, 21, 39, 53, 59, 81, 127, 133, 91, 81, 131, 165, 199, 289, 383, 321, 127, 5, 11, 17, 19, 21, 39
OFFSET
0,2
COMMENTS
When convolved with A151575: (1, 0, 2, -2, 6, -10, 22, -42, 86, -170, 342, ...) equals the toothpick sequence A139250: (1, 3, 7, 11, 15, 23, 35, 43, ...). - Gary W. Adamson, May 25 2009
Equals A160552: [1, 1, 3, 1, 3, 5, ...] convolved with [1, 2, 0, 0, 0, ...], equivalent to a(n) = 2*A160552(n) + A160552(n+1). - Gary W. Adamson, Jun 04 2009
Equals (1, 0, -2, 2, -2, 2, ...) convolved with the Toothpick sequence, A139250. - Gary W. Adamson, Mar 06 2012
It appears that the sums of two successive terms give A147646. - Omar E. Pol, Feb 18 2015
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
FORMULA
a(2^k-1) = 2^(k+1)-1 for k >= 0; otherwise a(2^k) = 5 for k >= 1; otherwise a(2^i+j) = 2a(j)+a(j+1) for i >= 2, 1 <= j <= 2^i-2. - N. J. A. Sloane, May 22 2009
G.f.: 1/(1+x) + 4*x*mul(1+x^(2^k-1)+2*x^(2^k),k=1..oo). - N. J. A. Sloane, May 23 2009
a(n) = A147646(n) - a(n-1), n >= 1. - Omar E. Pol, Feb 19 2015
EXAMPLE
From Omar E. Pol, Jul 24 2009: (Start)
When written as a triangle:
1;
3;
5,7;
5,11,17,15;
5,11,17,19,21,39,49,31;
5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,63;
5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,67,21,39,53,59,81,127,133,91,...
(End)
MAPLE
G := 1/(1+x) + 4*x*mul(1+x^(2^k-1)+2*x^(2^k), k=1..20); # N. J. A. Sloane, May 23 2009
S2:=proc(n) option remember; local i, j;
if n <= 1 then RETURN(2*n+1); fi;
i:=floor(log(n)/log(2));
j:=n-2^i;
if j=0 then 5 elif j=2^i-1 then 2*n+1
else 2*S2(j)+S2(j+1); fi;
end; # - N. J. A. Sloane, May 22 2009
MATHEMATICA
terms = 70; CoefficientList[1/(1 + x) + 4*x*Product[1 + x^(2^k - 1) + 2*x^(2^k), {k, 1, Log[2, terms] // Ceiling}] + O[x]^terms, x] (* Jean-François Alcover, Nov 14 2017, after N. J. A. Sloane *)
KEYWORD
nonn
AUTHOR
David Applegate, May 18 2009
STATUS
approved