login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151548 When A160552 is regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., this is what the rows converge to. 16
1, 3, 5, 7, 5, 11, 17, 15, 5, 11, 17, 19, 21, 39, 49, 31, 5, 11, 17, 19, 21, 39, 49, 35, 21, 39, 53, 59, 81, 127, 129, 63, 5, 11, 17, 19, 21, 39, 49, 35, 21, 39, 53, 59, 81, 127, 129, 67, 21, 39, 53, 59, 81, 127, 133, 91, 81, 131, 165, 199, 289, 383, 321, 127, 5, 11, 17, 19, 21, 39 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

When convolved with A151575: (1, 0, 2, -2, 6, -10, 22, -42, 86, -170, 342,...) equals the toothpick sequence A139250: (1, 3, 7, 11, 15, 23, 35, 43,...). - Gary W. Adamson, May 25 2009

Equals A160552: [1, 1, 3, 1, 3, 5,...] convolved with [1, 2, 0, 0, 0,...], equivalent to a(n) = 2*A160552(n) + A160552(n+1). - Gary W. Adamson, Jun 04 2009

Equals (1, 0, -2, 2, -2, 2,...) convolved with the Toothpick sequence, A139250. - Gary W. Adamson, Mar 06 2012

It appears that the sums of two successive terms give A147646. - Omar E. Pol, Feb 18 2015

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..10000

David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata

N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015

FORMULA

a(2^k-1) = 2^(k+1)-1 for k >= 0; otherwise a(2^k) = 5 for k >= 1; otherwise a(2^i+j) = 2a(j)+a(j+1) for i >= 2, 1 <= j <= 2^i-2. - N. J. A. Sloane, May 22 2009

G.f.: 1/(1+x) + 4*x*mul(1+x^(2^k-1)+2*x^(2^k),k=1..oo). - N. J. A. Sloane, May 23 2009

a(n) = A147646(n) - a(n-1), n >= 1. - Omar E. Pol, Feb 19 2015

EXAMPLE

From Omar E. Pol, Jul 24 2009: (Start)

When written as a triangle:

1;

3;

5,7;

5,11,17,15;

5,11,17,19,21,39,49,31;

5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,63;

5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,67,21,39,53,59,81,127,133,91,...

(End)

MAPLE

G := 1/(1+x) + 4*x*mul(1+x^(2^k-1)+2*x^(2^k), k=1..20); - N. J. A. Sloane, May 23 2009

S2:=proc(n) option remember; local i, j;

if n <= 1 then RETURN(2*n+1); fi;

i:=floor(log(n)/log(2));

j:=n-2^i;

if j=0 then 5 elif j=2^i-1 then 2*n+1

else 2*S2(j)+S2(j+1); fi;

end; # - N. J. A. Sloane, May 22 2009

MATHEMATICA

terms = 70; CoefficientList[1/(1 + x) + 4*x*Product[1 + x^(2^k - 1) + 2*x^(2^k), {k, 1, Log[2, terms] // Ceiling}] + O[x]^terms, x] (* Jean-Fran├žois Alcover, Nov 14 2017, after N. J. A. Sloane *)

CROSSREFS

Cf. A139250, A160552, A151549, A078008, A246336, A147646, A151575.

Sequence in context: A077129 A073409 A260234 * A256258 A177433 A264827

Adjacent sequences:  A151545 A151546 A151547 * A151549 A151550 A151551

KEYWORD

nonn

AUTHOR

David Applegate, May 18 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 18 20:32 EST 2018. Contains 299330 sequences. (Running on oeis4.)