OFFSET
0,2
COMMENTS
When convolved with A151575: (1, 0, 2, -2, 6, -10, 22, -42, 86, -170, 342, ...) equals the toothpick sequence A139250: (1, 3, 7, 11, 15, 23, 35, 43, ...). - Gary W. Adamson, May 25 2009
Equals A160552: [1, 1, 3, 1, 3, 5, ...] convolved with [1, 2, 0, 0, 0, ...], equivalent to a(n) = 2*A160552(n) + A160552(n+1). - Gary W. Adamson, Jun 04 2009
Equals (1, 0, -2, 2, -2, 2, ...) convolved with the Toothpick sequence, A139250. - Gary W. Adamson, Mar 06 2012
It appears that the sums of two successive terms give A147646. - Omar E. Pol, Feb 18 2015
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..10000
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
FORMULA
a(2^k-1) = 2^(k+1)-1 for k >= 0; otherwise a(2^k) = 5 for k >= 1; otherwise a(2^i+j) = 2a(j)+a(j+1) for i >= 2, 1 <= j <= 2^i-2. - N. J. A. Sloane, May 22 2009
G.f.: 1/(1+x) + 4*x*mul(1+x^(2^k-1)+2*x^(2^k),k=1..oo). - N. J. A. Sloane, May 23 2009
a(n) = A147646(n) - a(n-1), n >= 1. - Omar E. Pol, Feb 19 2015
EXAMPLE
From Omar E. Pol, Jul 24 2009: (Start)
When written as a triangle:
1;
3;
5,7;
5,11,17,15;
5,11,17,19,21,39,49,31;
5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,63;
5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,67,21,39,53,59,81,127,133,91,...
(End)
MAPLE
G := 1/(1+x) + 4*x*mul(1+x^(2^k-1)+2*x^(2^k), k=1..20); # N. J. A. Sloane, May 23 2009
S2:=proc(n) option remember; local i, j;
if n <= 1 then RETURN(2*n+1); fi;
i:=floor(log(n)/log(2));
j:=n-2^i;
if j=0 then 5 elif j=2^i-1 then 2*n+1
else 2*S2(j)+S2(j+1); fi;
end; # - N. J. A. Sloane, May 22 2009
MATHEMATICA
terms = 70; CoefficientList[1/(1 + x) + 4*x*Product[1 + x^(2^k - 1) + 2*x^(2^k), {k, 1, Log[2, terms] // Ceiling}] + O[x]^terms, x] (* Jean-François Alcover, Nov 14 2017, after N. J. A. Sloane *)
CROSSREFS
KEYWORD
nonn
AUTHOR
David Applegate, May 18 2009
STATUS
approved