login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147646 If A139251 is written as a triangle with rows of lengths 1, 2, 4, 8, 16, ..., the n-th row begins with 2^n followed by the first 2^n-1 terms of the present sequence. 13
4, 8, 12, 12, 16, 28, 32, 20, 16, 28, 36, 40, 60, 88, 80, 36, 16, 28, 36, 40, 60, 88, 84, 56, 60, 92, 112, 140, 208, 256, 192, 68, 16, 28, 36, 40, 60, 88, 84, 56, 60, 92, 112, 140, 208, 256, 196, 88, 60, 92, 112, 140, 208, 260, 224, 172, 212, 296, 364, 488, 672, 704, 448, 132 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Limiting behavior of the rows of the triangle in A139251 when the first column of that triangle is omitted.

First differences of A159795. - Omar E. Pol, Jul 24 2009

It appears that a(n) is also the number of new grid points that are covered at n-th stage of A139250 version "Tree", assuming the toothpicks have length 4, 3, and 2 (see also A159795 and A153006). - Omar E. Pol, Oct 25 2011

LINKS

David Applegate, Table of n, a(n) for n = 1..2047

David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata

N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS

Index entries for sequences related to toothpick sequences

FORMULA

Letting n=2^i+j for 0<=j<2^i, we have the recurrence (see A139251 for proof):

a(1) = 4

a(2) = 8

a(n) = 2n+4 = 2*a(n/2)-4 if j = 0

a(n) = 2*a(j)+a(j+1)-4 if j = 2^i-1

a(n) = 2*a(j)+a(j+1) if 1 <= j < 2^i-1

It appears that a(n) = A151548(n-1) + A151548(n). - Omar E. Pol, Feb 19 2015

EXAMPLE

Further comments: A139251 as a triangle is:

. 1

. 2 4

. 4 4 8 12

. 8 4 8 12 12 16 28 32

. 16 4 8 12 12 16 28 32 20 16 28 36 40 60 88 80

. 32 4 8 12 12 16 28 32 20 16 28 36 40 60 88 80 36 16 28 36 40 60 88 84 56 ...

leading to the present sequence:

. 4 8 12 12 16 28 32 20 16 28 36 40 60 88 80 36 16 28 36 40 60 88 84 56 ...

Note that this can also be written as a triangle:

. 4 8

. 12 12 16 28

. 32 20 16 28 36 40 60 88

. 80 36 16 28 36 40 60 88 84 56 60 92 112 140 208 256

. 192 68 16 28 36 40 60 88 84 56 60 92 112 140 208 256 196 88 60 92 112 140 ...

The first column is (n+1)2^n (where n is the row number),

the second column is 2^(n+1)+4,

and the rest exhibits the same constant column behavior,

where the rows converge to:

. 16 28 36 40 60 88 84 56 60 92 112 140 208 256 196 88 60 92 112 140 ...

Once again this can be written as a triangle:

. 16

. 28 36 40 60

. 88 84 56 60 92 112 140 208

. 256 196 88 60 92 112 140 208 260 224 172 212 296 364 488 672

. 704 452 152 60 92 112 140 208 260 224 172 212 296 364 488 672 708 480 236 ...

and this behavior continues ad infinitum.

MAPLE

# From N. J. A. Sloane, May 18 2009: (Start)

S:=proc(n) option remember; local i, j;

if n <= 0 then RETURN(0); fi;

if n <= 2 then RETURN(2^(n+1)); fi;

i:=floor(log(n)/log(2));

j:=n-2^i;

if j=0 then RETURN(2*n+4); fi;

if j<2^i-1 then RETURN(2*S(j)+S(j+1)); fi;

if j=2^i-1 then RETURN(2*S(j)+S(j+1)-4); fi;

-1;

end;

# (End)

CROSSREFS

Equals 2*A151688 and 4*A152980. - N. J. A. Sloane, Jul 16 2009

Cf. A139250, A139251, A153006, A159795, A151548.

Sequence in context: A120427 A060830 A080458 * A080229 A284510 A167523

Adjacent sequences:  A147643 A147644 A147645 * A147647 A147648 A147649

KEYWORD

nonn

AUTHOR

David Applegate, Apr 30 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 12:33 EST 2018. Contains 299379 sequences. (Running on oeis4.)