OFFSET
0,4
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0, 3, 0, -3, 0, 1).
FORMULA
O.g.f.: x*(1+x+x^2)*(1+x^2)/((1-x)^3*(1+x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6), n>5.
Euler transform of length 4 sequence [ 1, 4, -1, -1]. - Michael Somos, Aug 07 2014
a(2n+1) = a(2n) + a(2n+2) for all n in Z. - Michael Somos, Aug 07 2014
A120328(n-1) = 3*n^2 + 2 = a(2*n + 1) - a(2*n)+ a(2*n - 1) for all n in Z. - Michael Somos, Aug 07 2014
a(n) = n^2*(1+(-1)^n)/8+(n^2+1)*(1-(-1)^n)/4. - Wesley Ivan Hurt, Sep 06 2015
EXAMPLE
G.f. = x + x^2 + 5*x^3 + 4*x^4 + 13*x^5 + 9*x^6 + 25*x^7 + 16*x^8 + 41*x^9 + ...
MAPLE
A147685:=n->n^2*(1+(-1)^n)/8+(n^2+1)*(1-(-1)^n)/4: seq(A147685(n), n=0..70); # Wesley Ivan Hurt, Sep 06 2015
MATHEMATICA
CoefficientList[Series[x (1 + x + x^2) (1 + x^2)/((1 - x)^3 (1 + x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 07 2014 *)
PROG
(PARI) {a(n) = if( n%2, (n^2 + 1) / 2, n^2 / 4)}; /* Michael Somos, Aug 07 2014 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Nov 10 2008
STATUS
approved