login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A146005 a(n) = n*Lucas(n). 2
0, 1, 6, 12, 28, 55, 108, 203, 376, 684, 1230, 2189, 3864, 6773, 11802, 20460, 35312, 60707, 104004, 177631, 302540, 513996, 871266, 1473817, 2488368, 4194025, 7057518, 11858508, 19898116, 33345679, 55814940, 93320819, 155867104 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).

FORMULA

a(n) = n*A000032(n).

G.f.: x(1+4x-x^2)/(1-x-x^2)^2.

a(n) = 2*a(n-1)+a(n-2)-2*a(n-3)-a(n-4).

a(n) = A000045(n)-5*A000045(n+1)+5*A010049(n+1).

a(n) = A045925(n)+2*A099920(n-1).

E.g.f.: x*exp(x/2)*(cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)). - G. C. Greubel, Jan 30 2016

MATHEMATICA

Table[LucasL[n, 1]*n, {n, 0, 36}] (* Zerinvary Lajos, Jul 09 2009 *)

CoefficientList[Series[x * (1 + 4*x - x^2)/(1 - x - x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 13 2012 *)

LinearRecurrence[{2, 1, -2, -1}, {0, 1, 6, 12}, 40] (* Harvey P. Dale, Apr 03 2013 *)

PROG

(MAGMA) I:=[0, 1, 6, 12]; [n le 4 select I[n] else 2*Self(n-1) + Self(n-2) - 2*Self(n-3) - Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 13 2012

CROSSREFS

Sequence in context: A057341 A068412 A183026 * A223346 A109510 A034715

Adjacent sequences:  A146002 A146003 A146004 * A146006 A146007 A146008

KEYWORD

easy,nonn

AUTHOR

R. J. Mathar, Oct 26 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 17 14:50 EST 2018. Contains 318201 sequences. (Running on oeis4.)