|
|
A145411
|
|
Number of Hamiltonian cycles in K_6 X P_n.
|
|
1
|
|
|
60, 12000, 1758360, 261136920, 38768711160, 5755703361240, 854506434905400, 126862210606868760, 18834288215839119480, 2796186594116563849560, 415129012549619965635000, 61631114827252880297037720
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 1..460
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
F. Faase, Counting Hamiltonian cycles in product graphs.
F. Faase, Results from the counting program
Index entries for linear recurrences with constant coefficients, signature (145,516,-288).
|
|
FORMULA
|
Recurrence:
a(1) = 60,
a(2) = 12000,
a(3) = 1758360, and
a(n) = 145a(n-1) + 516a(n-2) - 288a(n-3).
G.f.: 60*x*(1+55*x-210*x^2)/(1-145*x-516*x^2+288*x^3). [R. J. Mathar, Feb 19 2009; corrected by Georg Fischer, May 12 2019]
|
|
MATHEMATICA
|
LinearRecurrence[{145, 516, -288}, {60, 12000, 1758360}, 20] (* Harvey P. Dale, Jun 16 2015 *)
|
|
CROSSREFS
|
Sequence in context: A146513 A269883 A251991 * A248708 A184890 A295598
Adjacent sequences: A145408 A145409 A145410 * A145412 A145413 A145414
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Feb 03 2009
|
|
EXTENSIONS
|
More terms from R. J. Mathar, Feb 19 2009
|
|
STATUS
|
approved
|
|
|
|