login
A145411
Number of Hamiltonian cycles in K_6 X P_n.
1
60, 12000, 1758360, 261136920, 38768711160, 5755703361240, 854506434905400, 126862210606868760, 18834288215839119480, 2796186594116563849560, 415129012549619965635000, 61631114827252880297037720
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
FORMULA
Recurrence:
a(1) = 60,
a(2) = 12000,
a(3) = 1758360, and
a(n) = 145a(n-1) + 516a(n-2) - 288a(n-3).
G.f.: 60*x*(1+55*x-210*x^2)/(1-145*x-516*x^2+288*x^3). [R. J. Mathar, Feb 19 2009; corrected by Georg Fischer, May 12 2019]
MATHEMATICA
LinearRecurrence[{145, 516, -288}, {60, 12000, 1758360}, 20] (* Harvey P. Dale, Jun 16 2015 *)
CROSSREFS
Sequence in context: A146513 A269883 A251991 * A248708 A184890 A295598
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 03 2009
EXTENSIONS
More terms from R. J. Mathar, Feb 19 2009
STATUS
approved