login
A295598
Numbers k such that Bernoulli number B_{k} has denominator 56786730.
1
60, 13620, 21180, 23340, 26940, 31260, 40620, 45420, 49620, 52620, 58020, 59460, 69780, 73020, 74220, 78180, 79140, 83940, 89580, 97260, 97620, 100020, 104460, 111660, 116940, 117060, 119820, 123180, 125340, 127860, 137820, 140460, 142260, 142620, 157980, 162420
OFFSET
1,1
COMMENTS
56786730 = 2*3*5*7*11*13*31*61.
All terms are multiples of a(1) = 60.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 34488049.
LINKS
EXAMPLE
Bernoulli B_{60} is
-1215233140483755572040304994079820246041491/56786730, hence 60 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 56786730);
# Alternative: # according to Robert Israel code in A282773
with(numtheory): filter:= n ->
select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 11, 13, 31, 61}:
select(filter, [seq(i, i=1..10^5)]);
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Nov 24 2017
STATUS
approved