login
A145407
Number of Hamiltonian paths in O_6 X P_n.
1
120, 41280, 6641952, 886927344, 105209243232, 16691618745408, 3453770804410752, 830385563124340992, 212352384742765204992, 55504372130542230537216, 14614230909478166949599232
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
FORMULA
Recurrence:
a(1) = 120,
a(2) = 41280,
a(3) = 6641952,
a(4) = 886927344,
a(5) = 105209243232, and
a(n) = 350a(n-1) - 22608a(n-2) - 17280a(n-3) + 843264a(n-4).
G.f.: 24*x*(2268414568*x^4 +20934334*x^3 +212212*x^2 +30*x -5)/((6*x -1)*(140544*x^3 +20544*x^2 -344*x +1)). [Colin Barker, Aug 31 2012]
MAPLE
A145407 := proc(n) option remember; if n <= 5 then op(n, [120, 41280, 6641952, 886927344, 105209243232]) ; else 350*procname(n-1)- 22608*procname(n-2) - 17280*procname(n-3) + 843264*procname(n-4); fi; end: seq(A145407(n), n=1..20) ; # R. J. Mathar, Mar 14 2009
MATHEMATICA
Join[{120}, LinearRecurrence[{350, -22608, -17280, 843264}, {41280, 6641952, 886927344, 105209243232}, 10]] (* Jean-François Alcover, Apr 04 2020 *)
CROSSREFS
Sequence in context: A054778 A230729 A027493 * A010798 A283829 A275457
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 03 2009
EXTENSIONS
More terms from R. J. Mathar, Mar 14 2009
STATUS
approved