login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145407 Number of Hamiltonian paths in O_6 X P_n. 1
120, 41280, 6641952, 886927344, 105209243232, 16691618745408, 3453770804410752, 830385563124340992, 212352384742765204992, 55504372130542230537216, 14614230909478166949599232 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

LINKS

Table of n, a(n) for n=1..11.

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.

F. Faase, Counting Hamiltonian cycles in product graphs.

F. Faase, Results from the counting program

Index entries for linear recurrences with constant coefficients, signature (350,-22608,-17280,843264).

FORMULA

Recurrence:

a(1) = 120,

a(2) = 41280,

a(3) = 6641952,

a(4) = 886927344,

a(5) = 105209243232, and

a(n) = 350a(n-1) - 22608a(n-2) - 17280a(n-3) + 843264a(n-4).

G.f.: 24*x*(2268414568*x^4 +20934334*x^3 +212212*x^2 +30*x -5)/((6*x -1)*(140544*x^3 +20544*x^2 -344*x +1)). [Colin Barker, Aug 31 2012]

MAPLE

A145407 := proc(n) option remember; if n <= 5 then op(n, [120, 41280, 6641952, 886927344, 105209243232]) ; else 350*procname(n-1)- 22608*procname(n-2) - 17280*procname(n-3) + 843264*procname(n-4); fi; end: seq(A145407(n), n=1..20) ; # R. J. Mathar, Mar 14 2009

MATHEMATICA

Join[{120}, LinearRecurrence[{350, -22608, -17280, 843264}, {41280, 6641952, 886927344, 105209243232}, 10]] (* Jean-Fran├žois Alcover, Apr 04 2020 *)

CROSSREFS

Sequence in context: A054778 A230729 A027493 * A010798 A283829 A275457

Adjacent sequences:  A145404 A145405 A145406 * A145408 A145409 A145410

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Feb 03 2009

EXTENSIONS

More terms from R. J. Mathar, Mar 14 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 24 19:40 EDT 2020. Contains 338009 sequences. (Running on oeis4.)