This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144542 Unique sequence of digits a(0), a(1), a(2), .. such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n satisfies 14^A(k) == A(k) mod 10^k. 16
 6, 3, 3, 2, 0, 5, 7, 6, 5, 7, 7, 3, 2, 8, 2, 3, 0, 7, 7, 6, 2, 8, 8, 0, 4, 8, 1, 7, 3, 0, 6, 3, 9, 8, 8, 4, 0, 5, 3, 2, 9, 9, 2, 3, 4, 6, 7, 4, 1, 4, 3, 4, 5, 6, 1, 2, 6, 1, 4, 1, 8, 3, 1, 7, 0, 3, 9, 9, 1, 3, 6, 2, 4, 8, 0, 5, 0, 9, 3, 7, 8, 7, 0, 4, 2, 2, 8, 3, 5, 1, 3, 3, 9, 8, 0, 5, 6, 2, 4, 7, 8, 7, 3, 4, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES M. RipĂ , La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6. Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229. LINKS Robert G. Wilson v, Table of n, a(n) for n = 0..1024 J. Jimenez Urroz and J. Luis A. Yebra, On the equation a^x == x (mod b^n), J. Int. Seq. 12 (2009) #09.8.8 EXAMPLE 633205765773282307762880481730639884053299234674143456126141831703991362480509... MATHEMATICA (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) \$RecursionLimit = 2^14; f[n_] := SuperPowerMod[14, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *) CROSSREFS Cf. A133612, A133613, A133614, A133615, A133616, A133617, A133618, A133619, A144539, A144540, A144541, A144543, A144544. Sequence in context: A307150 A195457 A155964 * A222457 A198872 A085670 Adjacent sequences:  A144539 A144540 A144541 * A144543 A144544 A144545 KEYWORD nonn,base AUTHOR N. J. A. Sloane, Dec 20 2008 EXTENSIONS a(68) onward from Robert G. Wilson v, Mar 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 04:06 EDT 2019. Contains 323377 sequences. (Running on oeis4.)