login
A144542
Unique sequence of digits a(0), a(1), a(2), .. such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n satisfies 14^A(k) == A(k) mod 10^k.
16
6, 3, 3, 2, 0, 5, 7, 6, 5, 7, 7, 3, 2, 8, 2, 3, 0, 7, 7, 6, 2, 8, 8, 0, 4, 8, 1, 7, 3, 0, 6, 3, 9, 8, 8, 4, 0, 5, 3, 2, 9, 9, 2, 3, 4, 6, 7, 4, 1, 4, 3, 4, 5, 6, 1, 2, 6, 1, 4, 1, 8, 3, 1, 7, 0, 3, 9, 9, 1, 3, 6, 2, 4, 8, 0, 5, 0, 9, 3, 7, 8, 7, 0, 4, 2, 2, 8, 3, 5, 1, 3, 3, 9, 8, 0, 5, 6, 2, 4, 7, 8, 7, 3, 4, 7
OFFSET
0,1
REFERENCES
M. RipĂ , La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.
LINKS
J. Jimenez Urroz and J. Luis A. Yebra, On the equation a^x == x (mod b^n), J. Int. Seq. 12 (2009) #09.8.8
EXAMPLE
633205765773282307762880481730639884053299234674143456126141831703991362480509...
MATHEMATICA
(* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[14, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Dec 20 2008
EXTENSIONS
a(68) onward from Robert G. Wilson v, Mar 06 2014
STATUS
approved