login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144543 Unique sequence of digits a(0), a(1), a(2), .. such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n satisfies 15^A(k) == A(k) mod 10^k. 16
5, 7, 3, 9, 5, 8, 0, 8, 3, 5, 6, 7, 0, 9, 6, 0, 8, 6, 4, 4, 9, 3, 4, 6, 1, 1, 9, 2, 8, 3, 7, 9, 3, 8, 6, 2, 4, 7, 7, 8, 5, 8, 6, 5, 4, 4, 7, 2, 3, 9, 3, 0, 4, 9, 4, 3, 1, 4, 4, 1, 9, 0, 4, 9, 3, 0, 0, 1, 2, 2, 1, 9, 8, 5, 2, 4, 5, 2, 4, 5, 3, 6, 5, 5, 8, 6, 7, 2, 7, 5, 4, 7, 7, 4, 6, 9, 1, 8, 3, 8, 3, 7, 1, 5, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

M. RipĂ , La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.

Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 0..1024

J. Jimenez Urroz and J. Luis A. Yebra, On the equation a^x == x (mod b^n), J. Int. Seq. 12 (2009) #09.8.8

EXAMPLE

573958083567096086449346119283793862477858654472393049431441904930012219852452...

MATHEMATICA

(* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[15, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

CROSSREFS

Cf. A133612, A133613, A133614, A133615, A133616, A133617, A133618, A133619, A144539, A144540, A144541, A144542, A144544.

Sequence in context: A091663 A011316 A151753 * A205135 A076567 A146535

Adjacent sequences:  A144540 A144541 A144542 * A144544 A144545 A144546

KEYWORD

nonn,base

AUTHOR

N. J. A. Sloane, Dec 20 2008

EXTENSIONS

a(68) onward from Robert G. Wilson v, Mar 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 08:59 EDT 2019. Contains 323389 sequences. (Running on oeis4.)