login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144152
Triangle read by rows: A128174 * X; X = an infinite lower triangular matrix with a shifted Fibonacci sequence: (1, 1, 1, 2, 3, 5, 8, ...) in the main diagonal and the rest zeros.
1
1, 0, 1, 1, 0, 1, 0, 1, 0, 2, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 5, 1, 0, 1, 0, 3, 0, 8, 0, 1, 0, 2, 0, 5, 0, 13, 1, 0, 1, 0, 3, 0, 8, 0, 21, 0, 1, 0, 2, 0, 0, 5, 0, 13, 0, 34, 1, 0, 1, 0, 3, 0, 8, 0, 21, 0, 55
OFFSET
1,10
COMMENTS
The original definition was: Eigentriangle, row sums = Fibonacci numbers.
Even n rows are composed of odd-indexed Fibonacci numbers interpolated with zeros.
Odd n rows are composed of even-indexed Fibonacci numbers with alternate zeros.
Sum of n-th row terms = rightmost term of next row, = F(n-1). Row sums = F(n).
FORMULA
A128174 = the matrix: (1; 0,1; 1,0,1; 0,1,0,1; ...). These operations are equivalent to termwise products of n terms of A128174 matrix row terms and an equal number of terms in (1, 1, 1, 2, 3, 5, 8, ...).
EXAMPLE
First few rows of the triangle =
1;
0, 1;
1, 0, 1;
0, 1, 0, 2;
1, 0, 1, 0, 3
0, 1, 0, 2, 0, 5;
1, 0, 1, 0, 3, 0, 8;
0, 1, 0, 2, 0, 5, 0, 13;
1, 0, 1, 0, 3, 0, 8, 0, 21;
...
Row 5 = (1, 0, 1, 0, 3) = termwise products of (1, 0, 1, 0, 1) and (1, 1, 1, 2, 3).
PROG
(PARI) MT(n, k) = (1+(-1)^(n-k))/2;
MF(n, k) = n--; k--; if (n==k, if (n==0, 1, fibonacci(n)), 0);
tabl(nn) = {my(T=matrix(nn, nn, n, k, MT(n, k))); my(F=matrix(nn, nn, n, k, MF(n, k))); my(P=T*F); matrix(nn, nn, n, k, if (n>=k, P[n, k], 0)); } \\ Michel Marcus, Mar 08 2021
CROSSREFS
Sequence in context: A158461 A281498 A118269 * A265674 A229297 A116675
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Sep 12 2008
EXTENSIONS
Moved a comment to the Name section. - Omar E. Pol, Mar 08 2021
STATUS
approved