This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116675 Triangle read by rows: T(n,k) is the number of partitions of n into distinct part and having exactly k odd parts (n>=0, k>=0). 3
 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 3, 0, 2, 0, 2, 0, 5, 0, 2, 0, 4, 0, 7, 0, 1, 3, 0, 7, 0, 0, 10, 0, 2, 4, 0, 11, 0, 0, 14, 0, 4, 5, 0, 17, 0, 0, 19, 0, 8, 6, 0, 25, 0, 1, 0, 25, 0, 13, 0, 8, 0, 36, 0, 2, 0, 33, 0, 21, 0, 10, 0, 50, 0, 4, 0, 43, 0, 33, 0, 12, 0, 69, 0, 8, 0, 55, 0, 49, 0, 15, 0, 93, 0, 14 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Row n contains 1+floor(sqrt(n)) terms (at the end of certain rows there is an extra 0). Row sums yield A000009. T(n,0) = A035457(n) (n>=1); T(2n,0) = A000009(n), T(2n-1,0)=0. T(2n,1)=0, T(2n-1,1) = A036469(n). Sum(k*T(n,k), k>=0) = A116676(n). LINKS Alois P. Heinz, Rows n = 0..750, flattened FORMULA G.f.: product((1+tx^(2j-1))(1+x^(2j)), j=1..infinity). EXAMPLE T(8,2) = 4 because we have [7,1], [5,3], [5,2,1] and [4,3,1] ([8] and [6,2] do not qualify). Triangle starts: 1; 0, 1; 1, 0; 0, 2; 1, 0, 1; 0, 3, 0; MAPLE g:=product((1+t*x^(2*j-1))*(1+x^(2*j)), j=1..25): gser:=simplify(series(g, x=0, 38)): P[0]:=1: for n from 1 to 26 do P[n]:=sort(coeff(gser, x^n)) od: for n from 0 to 26 do seq(coeff(P[n], t, j), j=0..floor(sqrt(n))) od; # yields sequence in triangular form # second Maple program: b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)->       x+y, b(n, i-1), `if`(i>n, [], [`if`(irem(i, 2)=0, [][], 0),       b(n-i, i-1)[]]), 0)))     end: T:= proc(n) local l; l:= b(n, n); l[], 0\$(1+floor(sqrt(n))-nops(l)) end: seq (T(n), n=0..30);  # Alois P. Heinz, Nov 21 2012 MATHEMATICA rows = 25; coes = CoefficientList[Product[(1+t*x^(2j-1))(1+x^(2j)), {j, 1, rows}], {x, t}][[1 ;; rows]]; MapIndexed[Take[#1, Floor[Sqrt[#2[[1]]-1]]+1]&, coes] // Flatten (* Jean-François Alcover, May 13 2015 *) CROSSREFS Cf. A000009, A035457, A036469, A116676. Sequence in context: A144152 A265674 A229297 * A123022 A072943 A072175 Adjacent sequences:  A116672 A116673 A116674 * A116676 A116677 A116678 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Feb 22 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 10:25 EDT 2019. Contains 328257 sequences. (Running on oeis4.)