login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144067 Euler transform of powers of 3. 6
1, 3, 15, 64, 276, 1137, 4648, 18585, 73494, 286834, 1108470, 4243128, 16111333, 60718488, 227302086, 845689753, 3128786415, 11515509603, 42179651417, 153808740042, 558532554942, 2020325112767, 7281212274165, 26151068072301, 93618849857345, 334119804933861 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 27.

N. J. A. Sloane, Transforms

FORMULA

G.f.: Product_{j>0} 1/(1-x^j)^(3^j).

a(n) ~  3^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(3^(m-1)-1)) = 0.3047484092142751906436952201501007636114175... . - Vaclav Kotesovec, Mar 14 2015

G.f.: exp(3*Sum_{k>=1} x^k/(k*(1 - 3*x^k))). - Ilya Gutkovskiy, Nov 09 2018

MAPLE

with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->3^j)(n): seq(a(n), n=0..40);

MATHEMATICA

etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a[n_] := etr[Function[3^#]][n]; Table[a[n], {n, 0, 40}] (* Jean-Fran├žois Alcover, Mar 09 2015, after Alois P. Heinz *)

CoefficientList[Series[Product[1/(1-x^k)^(3^k), {k, 1, 30}], {x, 0, 30}], x] (* G. C. Greubel, Nov 09 2018 *)

PROG

(PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^(3^k))) \\ G. C. Greubel, Nov 09 2018

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(3^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018

CROSSREFS

3rd column of A144074. Row sums of A275414.

Cf. A256142.

Sequence in context: A151241 A080948 A098102 * A001447 A106732 A052981

Adjacent sequences:  A144064 A144065 A144066 * A144068 A144069 A144070

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Sep 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 14:11 EDT 2019. Contains 325254 sequences. (Running on oeis4.)