login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143647 a(n) = ((5 + sqrt(3))^n + (5 - sqrt(3))^n)/2. 2
1, 5, 28, 170, 1084, 7100, 47152, 315320, 2115856, 14221520, 95666368, 643790240, 4333242304, 29169037760, 196359046912, 1321871638400, 8898817351936, 59906997474560, 403295993003008, 2715005985589760, 18277548009831424 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A083882. - R. J. Mathar, Nov 01 2008

Inverse binomial transform of A147961.

LINKS

Table of n, a(n) for n=0..20.

Index entries for linear recurrences with constant coefficients, signature (10, -22).

FORMULA

From Philippe Deléham, Klaus Brockhaus and R. J. Mathar, Nov 01 2008: (Start)

a(n) = 10*a(n-1) - 22*a(n-2), a(0)=1, a(1)=5.

G.f.: (1-5x)/(1-10x+22*x^2). (End)

a(n) = (Sum_{k=0..n} A098158(n,k)*5^(2*k)*3^(n-k))/5^n. - Philippe Deléham, Nov 06 2008

MATHEMATICA

Simplify[With[{c=Sqrt[3]}, Table[((5+c)^n+(5-c)^n)/2, {n, 0, 25}]]] (* or *) LinearRecurrence[{10, -22}, {1, 5}, 25] (* Harvey P. Dale, Jun 04 2011 *)

PROG

(MAGMA) Z<x>:= PolynomialRing(Integers()); N<r3>:=NumberField(x^2-3); S:=[ ((5+r3)^n+(5-r3)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 01 2008

CROSSREFS

Cf. A083882, A147961, A098158.

Sequence in context: A069731 A272046 A292871 * A082031 A020081 A095676

Adjacent sequences:  A143644 A143645 A143646 * A143648 A143649 A143650

KEYWORD

nonn

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Oct 27 2008

EXTENSIONS

More terms from Klaus Brockhaus and R. J. Mathar, Nov 01 2008

Edited by Klaus Brockhaus, Jul 15 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 18:52 EDT 2019. Contains 324215 sequences. (Running on oeis4.)