|
|
A143637
|
|
E.g.f. satisfies: A(x) = exp(x*A(((x+1)^6-1)/6)).
|
|
2
|
|
|
1, 1, 3, 31, 505, 12521, 443227, 20766159, 1240975409, 92068494625, 8282460205891, 886498379552919, 111190541933344777, 16136424098890466281, 2680205744964849259355, 504746978220729054647911, 106901213223866930807470433, 25280598116469824339521406081
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..100
|
|
MAPLE
|
A:= proc(n, k::nonnegint) option remember; if n<=0 or k=0 then 1 else A(n-1, k)(((x+1)^k-1)/k) fi; unapply(convert(series(exp(x*%), x, n+1), polynom), x) end: a:= n-> coeff(A(n, 6)(x), x, n)*n!: seq(a(n), n=0..20);
|
|
MATHEMATICA
|
A[n_, k_] := Module[{f}, f[x_] = If[n <= 0 || k == 0, 1, A[n-1, k][((x+1)^k-1)/k]]; Normal[Series[Exp[x*f[x]], { x, 0, n+1}]] /. x -> #]&; a[n_] := Coefficient[A[n, 6][x], x, n]*n!; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
|
|
CROSSREFS
|
Cf. 6th column of A143632.
Sequence in context: A212917 A223993 A342206 * A327227 A245109 A121563
Adjacent sequences: A143634 A143635 A143636 * A143638 A143639 A143640
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Aug 27 2008
|
|
STATUS
|
approved
|
|
|
|