login
A143637
E.g.f. satisfies: A(x) = exp(x*A(((x+1)^6-1)/6)).
2
1, 1, 3, 31, 505, 12521, 443227, 20766159, 1240975409, 92068494625, 8282460205891, 886498379552919, 111190541933344777, 16136424098890466281, 2680205744964849259355, 504746978220729054647911, 106901213223866930807470433, 25280598116469824339521406081
OFFSET
0,3
LINKS
MAPLE
A:= proc(n, k::nonnegint) option remember; if n<=0 or k=0 then 1 else A(n-1, k)(((x+1)^k-1)/k) fi; unapply(convert(series(exp(x*%), x, n+1), polynom), x) end: a:= n-> coeff(A(n, 6)(x), x, n)*n!: seq(a(n), n=0..20);
MATHEMATICA
A[n_, k_] := Module[{f}, f[x_] = If[n <= 0 || k == 0, 1, A[n-1, k][((x+1)^k-1)/k]]; Normal[Series[Exp[x*f[x]], { x, 0, n+1}]] /. x -> #]&; a[n_] := Coefficient[A[n, 6][x], x, n]*n!; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
CROSSREFS
Cf. 6th column of A143632.
Sequence in context: A223993 A342206 A346313 * A327227 A360091 A245109
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2008
STATUS
approved