|
|
A143454
|
|
Expansion of 1/(x^k*(1-x-3*x^(k+1))) for k=3.
|
|
5
|
|
|
1, 4, 7, 10, 13, 25, 46, 76, 115, 190, 328, 556, 901, 1471, 2455, 4123, 6826, 11239, 18604, 30973, 51451, 85168, 140980, 233899, 388252, 643756, 1066696, 1768393, 2933149, 4864417, 8064505, 13369684, 22169131, 36762382, 60955897, 101064949, 167572342
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) is also the number of length n quaternary words with at least 3 0-digits between any other digits.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 7, 4*a(n-7) equals the number of 4-colored compositions of n with all parts >= 4, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
D. Birmajer, J. B. Gil, M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 9.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,3).
|
|
FORMULA
|
G.f.: ( -1-3*x-3*x^2-3*x^3 ) / ( -1+x+3*x^4 ). - R. J. Mathar, Aug 04 2019
a(n) = Sum_{j=0..(n+3)/3} 3^j*C(n-3*j+3,j). - Vladimir Kruchinin, May 24 2011
|
|
MAPLE
|
a:= proc(k::nonnegint) local n, i, j; if k=0 then unapply(4^n, n) else unapply((Matrix(k+1, (i, j)-> if (i=j-1) or j=1 and i=1 then 1 elif j=1 and i=k+1 then 3 else 0 fi)^(n+k))[1, 1], n) fi end(3): seq(a(n), n=0..50);
|
|
MATHEMATICA
|
a[n_] := Sum[3^j*Binomial[n-3*j+3, j], {j, 0, (n+3)/3}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 04 2014, after Vladimir Kruchinin *)
|
|
PROG
|
(Maxima) a(n):= sum(3^j*binomial(n-3*j+3, j), j, 0, (n+3)/3); /* Vladimir Kruchinin, May 24 2011 */
(PARI) Vec(1/(x^3*(1-x-3*x^4))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
|
|
CROSSREFS
|
3rd column of A143461.
Sequence in context: A069212 A091290 A119256 * A318774 A065810 A123837
Adjacent sequences: A143451 A143452 A143453 * A143455 A143456 A143457
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Alois P. Heinz, Aug 16 2008
|
|
STATUS
|
approved
|
|
|
|