login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143454 Expansion of 1/(x^k*(1-x-3*x^(k+1))) for k=3. 5
1, 4, 7, 10, 13, 25, 46, 76, 115, 190, 328, 556, 901, 1471, 2455, 4123, 6826, 11239, 18604, 30973, 51451, 85168, 140980, 233899, 388252, 643756, 1066696, 1768393, 2933149, 4864417, 8064505, 13369684, 22169131, 36762382, 60955897, 101064949, 167572342 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is also the number of length n quaternary words with at least 3 0-digits between any other digits.

The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 7, 4*a(n-7) equals the number of 4-colored compositions of n with all parts >= 4, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

D. Birmajer, J. B. Gil, M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 9.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,3).

FORMULA

G.f.: ( -1-3*x-3*x^2-3*x^3 ) / ( -1+x+3*x^4 ). - R. J. Mathar, Aug 04 2019

a(n) = Sum_{j=0..(n+3)/3} 3^j*C(n-3*j+3,j). - Vladimir Kruchinin, May 24 2011

MAPLE

a:= proc(k::nonnegint) local n, i, j; if k=0 then unapply(4^n, n) else unapply((Matrix(k+1, (i, j)-> if (i=j-1) or j=1 and i=1 then 1 elif j=1 and i=k+1 then 3 else 0 fi)^(n+k))[1, 1], n) fi end(3): seq(a(n), n=0..50);

MATHEMATICA

a[n_] := Sum[3^j*Binomial[n-3*j+3, j], {j, 0, (n+3)/3}]; Table[a[n], {n, 0, 50}] (* Jean-Fran├žois Alcover, Feb 04 2014, after Vladimir Kruchinin *)

PROG

(Maxima) a(n):= sum(3^j*binomial(n-3*j+3, j), j, 0, (n+3)/3); /* Vladimir Kruchinin, May 24 2011 */

(PARI) Vec(1/(x^3*(1-x-3*x^4))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

CROSSREFS

3rd column of A143461.

Sequence in context: A069212 A091290 A119256 * A318774 A065810 A123837

Adjacent sequences:  A143451 A143452 A143453 * A143455 A143456 A143457

KEYWORD

nonn,easy

AUTHOR

Alois P. Heinz, Aug 16 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 30 16:01 EDT 2020. Contains 338081 sequences. (Running on oeis4.)