

A119256


Successively better denominators for estimating base 10 logs of 2, 3, 4, 5, 6, 7, 8 and 9. "Better" is defined by the RMS error of the best numerators for each given denominator.


0



1, 4, 7, 10, 13, 23, 40, 63, 176, 239, 329, 568, 10381, 49128, 60974, 281746, 342720, 7484108, 11452573, 18936681, 44390284, 55842857
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..21.
Estimating Log Base 10
Karl's Calculus Tutor: Log base 10 tricks (to the 40th degree)


EXAMPLE

a(6)=40 because the square root of the mean of (1240*log(2))^2, (1940*log(3))^2, (2440*log(4))^2, (2840*log(5))^2, (3140*log(6))^2, (3440*log(7))^2, (3640*log(8))^2 and (3840*log(9))^2 is smaller than the RMS values obtained using any denominator smaller than 40.


CROSSREFS

Sequence in context: A096675 A069212 A091290 * A143454 A318774 A065810
Adjacent sequences: A119253 A119254 A119255 * A119257 A119258 A119259


KEYWORD

base,nonn


AUTHOR

Graeme McRae, May 10 2006


STATUS

approved



