login
Pascal's triangle binomial(n,m) read by rows, all even elements replaced by zero.
5

%I #22 Dec 17 2015 02:57:44

%S 1,1,1,1,0,1,1,3,3,1,1,0,0,0,1,1,5,0,0,5,1,1,0,15,0,15,0,1,1,7,21,35,

%T 35,21,7,1,1,0,0,0,0,0,0,0,1,1,9,0,0,0,0,0,0,9,1,1,0,45,0,0,0,0,0,45,

%U 0,1

%N Pascal's triangle binomial(n,m) read by rows, all even elements replaced by zero.

%C Row sums are A088560.

%C A047999(n,k) = A057427(T(n,k)). - _Reinhard Zumkeller_, Oct 24 2010

%H Reinhard Zumkeller, <a href="/A143333/b143333.txt">Rows n = 0..127 of triangle, flattened</a>

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%F T(n,m) = A047999(n,m)*A007318(n,m).

%e The triangle starts in row n=0 with columns 0<=m<=n as:

%e 1;

%e 1, 1;

%e 1, 0, 1;

%e 1, 3, 3, 1;

%e 1, 0, 0, 0, 1;

%e 1, 5, 0, 0, 5, 1;

%e 1, 0, 15, 0, 15, 0, 1;

%e 1, 7, 21, 35, 35, 21, 7, 1;

%e 1, 0, 0, 0, 0, 0, 0, 0, 1;

%e 1, 9, 0, 0, 0, 0, 0, 0, 9, 1;

%e 1, 0, 45, 0, 0, 0, 0, 0, 45, 0, 1;

%t t[n_, m_] = Mod[Binomial[n, m], 2]*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

%o (Haskell)

%o a143333 n k = a143333_tabl !! (n-1) !! (k-1)

%o a143333_row n = a143333_tabl !! (n-1)

%o a143333_tabl = zipWith(zipWith (*)) a007318_tabl a047999_tabl

%o -- _Reinhard Zumkeller_, Oct 10 2013

%Y Cf. A007318, A014421, A047999, A088560. - _Reinhard Zumkeller_, Oct 24 2010

%K nonn,tabl,easy,look

%O 0,8

%A _Roger L. Bagula_ and _Gary W. Adamson_, Oct 21 2008

%E Offset set to 0 by _Reinhard Zumkeller_, Oct 21 2010