login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143333 Pascal's triangle binomial(n,m) read by rows, all even elements replaced by zero. 4
1, 1, 1, 1, 0, 1, 1, 3, 3, 1, 1, 0, 0, 0, 1, 1, 5, 0, 0, 5, 1, 1, 0, 15, 0, 15, 0, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 9, 0, 0, 0, 0, 0, 0, 9, 1, 1, 0, 45, 0, 0, 0, 0, 0, 45, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Row sums are A088560.

A047999(n,k) = A057427(T(n,k)). - Reinhard Zumkeller, Oct 24 2010

LINKS

Reinhard Zumkeller, Rows n = 0..127 of triangle, flattened

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

T(n,m) = A047999(n,m)*A007318(n,m).

EXAMPLE

The triangle starts in row n=0 with columns 0<=m<=n as:

  1;

  1,  1;

  1,  0,  1;

  1,  3,  3,  1;

  1,  0,  0,  0,  1;

  1,  5,  0,  0,  5,  1;

  1,  0, 15,  0, 15,  0,  1;

  1,  7, 21, 35, 35, 21,  7,  1;

  1,  0,  0,  0,  0,  0,  0,  0,  1;

  1,  9,  0,  0,  0,  0,  0,  0,  9,  1;

  1,  0, 45,  0,  0,  0,  0,  0, 45,  0,  1;

MATHEMATICA

t[n_, m_] = Mod[Binomial[n, m], 2]*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

PROG

(Haskell)

a143333 n k = a143333_tabl !! (n-1) !! (k-1)

a143333_row n = a143333_tabl !! (n-1)

a143333_tabl = zipWith(zipWith (*)) a007318_tabl a047999_tabl

-- Reinhard Zumkeller, Oct 10 2013

CROSSREFS

Cf. A007318, A014421, A047999, A088560. - Reinhard Zumkeller, Oct 24 2010

Sequence in context: A122850 A132062 A065547 * A283798 A065551 A283797

Adjacent sequences:  A143330 A143331 A143332 * A143334 A143335 A143336

KEYWORD

nonn,tabl,easy,look

AUTHOR

Roger L. Bagula and Gary W. Adamson, Oct 21 2008

EXTENSIONS

Offset set to 0 by Reinhard Zumkeller, Oct 21 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 17:09 EDT 2019. Contains 323533 sequences. (Running on oeis4.)