login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A143233
Decimal expansion of the dimer constant.
8
2, 9, 1, 5, 6, 0, 9, 0, 4, 0, 3, 0, 8, 1, 8, 7, 8, 0, 1, 3, 8, 3, 8, 4, 4, 5, 6, 4, 6, 8, 3, 9, 4, 9, 1, 8, 8, 6, 4, 0, 6, 6, 1, 5, 3, 9, 8, 5, 8, 3, 7, 2, 7, 0, 2, 6, 1, 0, 0, 1, 5, 6, 9, 1, 1, 1, 7, 4, 7, 6, 3, 6, 8, 8, 0, 4, 3, 8, 8, 6, 1, 7, 2, 6, 6, 2, 6, 8, 2, 4, 3, 0, 3, 1, 3, 4, 0, 5, 8, 9, 0, 8, 9, 7, 2
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.23, p. 407.
LINKS
Jesús Guillera and Jonathan Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, arXiv:math/0506319 [math.NT], 2005-2006; Ramanujan J., Vol. 16 (2008), pp. 247-270; see Example 5.5.
Eric Weisstein's World of Mathematics, Domino Tiling
FORMULA
Equals Catalan/Pi.
Also equals integral_{t=-Pi..Pi} arccosh(sqrt(cos(t)+3)/sqrt(2))/(4*Pi) dt. - Jean-François Alcover, May 14 2014
From Antonio Graciá Llorente, Oct 11 2024: (Start)
Equals Sum_{n>=0} (n/2^(n + 2)) * Sum_{k>=0} (-1)^(k + 1)*binomial(n, k)*log(2*k + 1), (Guillera and Sondow, 2008).
Equals Sum_{n>=1} n*(arccoth((4*n)/3) - 3*arccoth(4*n)). (End)
Equals A006752/Pi = log(A097469) = 2*A322757. - Hugo Pfoertner, Oct 11 2024
EXAMPLE
0.29156090403081878013...
MATHEMATICA
RealDigits[Catalan/Pi, 10, 100][[1]] (* G. C. Greubel, Aug 24 2018 *)
PROG
(PARI) default(realprecision, 100); Catalan/Pi \\ G. C. Greubel, Aug 24 2018
(Magma) SetDefaultRealField(RealField(100)); R:=RealField(); Catalan(R)/Pi(R); // G. C. Greubel, Aug 24 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 31 2008
STATUS
approved