OFFSET
1,1
COMMENTS
Numbers of the form 2^i * 3^j * 5^k with i, j, k > 0. - Reinhard Zumkeller, Sep 13 2011
Integers k such that phi(k)/k = 4/15. - Artur Jasinski, Nov 07 2008
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
FORMULA
a(n) ~ sqrt(30) * exp((6*log(2)*log(3)*log(5)*n)^(1/3)). - Vaclav Kotesovec, Sep 22 2020
Sum_{n>=1} 1/a(n) = 1/8. - Amiram Eldar, Sep 24 2020
MATHEMATICA
a = {}; Do[If[EulerPhi[x]/x == 4/15, AppendTo[a, x]], {x, 1, 11664}]; a (* Artur Jasinski, Nov 07 2008 *)
n = 10^4; Table[2^i*3^j*5^k, {i, 1, Log[2, n]}, {j, 1, Log[3, n/2^i]}, {k, 1, Log[5, n/(2^i*3^j)]}] // Flatten // Sort (* Amiram Eldar, Sep 24 2020 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a143207 n = a143207_list !! (n-1)
a143207_list = f (singleton (2*3*5)) where
f s = m : f (insert (2*m) $ insert (3*m) $ insert (5*m) s') where
(m, s') = deleteFindMin s
-- Reinhard Zumkeller, Sep 13 2011
(PARI) list(lim)=my(v=List(), s, t); for(i=1, logint(lim\6, 5), t=5^i; for(j=1, logint(lim\t\2, 3), s=t*3^j; while((s<<=1)<=lim, listput(v, s)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
(PARI) is(n) = if(n%30, return(0)); my(f=factor(n, 6)[, 1]); f[#f]<6 \\ David A. Corneth, Sep 22 2020
(Magma) [n: n in [1..5000] | PrimeDivisors(n) eq [2, 3, 5]]; // Bruno Berselli, Sep 14 2015
(Python)
from sympy import integer_log
def A143207(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = n+x
for i in range(integer_log(x, 5)[0]+1):
for j in range(integer_log(m:=x//5**i, 3)[0]+1):
c -= (m//3**j).bit_length()
return c
return bisection(f, n, n)*30 # Chai Wah Wu, Sep 16 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 12 2008
EXTENSIONS
New name from Charles R Greathouse IV, Sep 14 2015
STATUS
approved