login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143207
Numbers with distinct prime factors 2, 3, and 5.
32
30, 60, 90, 120, 150, 180, 240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810, 900, 960, 1080, 1200, 1350, 1440, 1500, 1620, 1800, 1920, 2160, 2250, 2400, 2430, 2700, 2880, 3000, 3240, 3600, 3750, 3840, 4050, 4320, 4500, 4800, 4860
OFFSET
1,1
COMMENTS
Numbers of the form 2^i * 3^j * 5^k with i, j, k > 0. - Reinhard Zumkeller, Sep 13 2011
Integers k such that phi(k)/k = 4/15. - Artur Jasinski, Nov 07 2008
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
FORMULA
A001221(a(n)) = 3; A020639(a(n)) = 2; A006530(a(n)) = 5; A143201(a(n)) = 6.
a(n) = 30*A051037(n); A007947(a(n)) = A010869(n). - Reinhard Zumkeller, Sep 13 2011
a(n) ~ sqrt(30) * exp((6*log(2)*log(3)*log(5)*n)^(1/3)). - Vaclav Kotesovec, Sep 22 2020
Sum_{n>=1} 1/a(n) = 1/8. - Amiram Eldar, Sep 24 2020
MATHEMATICA
a = {}; Do[If[EulerPhi[x]/x == 4/15, AppendTo[a, x]], {x, 1, 11664}]; a (* Artur Jasinski, Nov 07 2008 *)
n = 10^4; Table[2^i*3^j*5^k, {i, 1, Log[2, n]}, {j, 1, Log[3, n/2^i]}, {k, 1, Log[5, n/(2^i*3^j)]}] // Flatten // Sort (* Amiram Eldar, Sep 24 2020 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a143207 n = a143207_list !! (n-1)
a143207_list = f (singleton (2*3*5)) where
f s = m : f (insert (2*m) $ insert (3*m) $ insert (5*m) s') where
(m, s') = deleteFindMin s
-- Reinhard Zumkeller, Sep 13 2011
(PARI) list(lim)=my(v=List(), s, t); for(i=1, logint(lim\6, 5), t=5^i; for(j=1, logint(lim\t\2, 3), s=t*3^j; while((s<<=1)<=lim, listput(v, s)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
(PARI) is(n) = if(n%30, return(0)); my(f=factor(n, 6)[, 1]); f[#f]<6 \\ David A. Corneth, Sep 22 2020
(Magma) [n: n in [1..5000] | PrimeDivisors(n) eq [2, 3, 5]]; // Bruno Berselli, Sep 14 2015
(Python)
from sympy import integer_log
def A143207(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = n+x
for i in range(integer_log(x, 5)[0]+1):
for j in range(integer_log(m:=x//5**i, 3)[0]+1):
c -= (m//3**j).bit_length()
return c
return bisection(f, n, n)*30 # Chai Wah Wu, Sep 16 2024
CROSSREFS
Cf. A069819.
Subsequence of A143204 and of A051037.
Sequence in context: A050519 A358756 A069819 * A359410 A108454 A235483
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 12 2008
EXTENSIONS
New name from Charles R Greathouse IV, Sep 14 2015
STATUS
approved