This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A142704 A generalized factorial level recursion of a Padovan type: a(n) = b(n)*(a(n-2) + a(n-3)) with b(n) = b(n-1) + k and k=2. 1
 0, 1, 1, 6, 16, 70, 264, 1204, 5344, 26424, 130960, 698896, 3777216, 21576256, 125331136, 760604160, 4701036544, 30121800064, 196619065344, 1323267791104, 9069634616320, 63835247970816, 457287705926656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = b(n)*(a(n-2) + a(n-3)) with b(n) = b(n-1) + k and k = 2. a(n) = 2*n*(a(n-2) + a(n-3)) with a(0) = 0, a(1) = a(2) = 1 [Johannes W. Meijer, Jul 27 2011] E.g.f.: Pi/(4*sqrt(2))*exp(x^2/2)*x*sqrt(1+x)*(BesselI(-1/4,1/2*(1+x)^2)*(2*BesselI(-3/4,1/2)-BesselI(1/4,1/2))+BesselI(1/4,1/2*(1+x)^2)*(BesselI(-1/4,1/2)-2*BesselI(3/4,1/2))). - Vaclav Kotesovec, Dec 28 2012 a(n) ~ sqrt(Pi)/8 * (2*BesselI(-3/4,1/2) - 2*BesselI(3/4,1/2) + BesselI(-1/4,1/2) - BesselI(1/4,1/2)) * 2^(n/2-1/4)*exp(sqrt(n)/sqrt(2)-n/2+3/8)*n^(n/2+1/4) * (1-47/(48*sqrt(2*n))). - Vaclav Kotesovec, Dec 28 2012 MAPLE A142704 := proc(n) option remember: if n=0 then 0 elif n=1 then 1 elif n =2 then 1 elif n>=3 then 2*n*(procname(n-2) + procname(n-3)) fi: end: seq(A142704(n), n=0..22); [Johannes W. Meijer, Jul 27 2011] MATHEMATICA Clear[a, b, n, k]; k = 2; b[0] = 0; b[n_] := b[n] = b[n - 1] + k; a[0] = 0; a[1] = 1; a[2] = 2; a[n_] := a[n] = b[n]*(a[n - 2] + a[n - 3]); Table[a[n], {n, 0, 22}] FullSimplify[CoefficientList[Series[Pi/(4*Sqrt[2])*E^(x^2/2)*x *Sqrt[1+x] *(BesselI[-1/4, 1/2*(1+x)^2]*(2*BesselI[-3/4, 1/2] - BesselI[1/4, 1/2]) + BesselI[1/4, 1/2*(1+x)^2]*(BesselI[-1/4, 1/2] - 2*BesselI[3/4, 1/2])), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 28 2012 *) CROSSREFS Cf. A171386 (k=0), A108189 (k=1), A002467 (Game of Mousetrap), A000931 (Padovan). Sequence in context: A120795 A118640 A277747 * A083885 A211954 A230942 Adjacent sequences:  A142701 A142702 A142703 * A142705 A142706 A142707 KEYWORD nonn,easy AUTHOR Roger L. Bagula and Gary W. Adamson, Sep 24 2008 EXTENSIONS Edited and information added by Johannes W. Meijer, Jul 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.