OFFSET
1,1
COMMENTS
a(31) > 14000. - Giovanni Resta, Apr 02 2013
a(36) > 50000. - Roger Karpin, Jul 07 2015
If k is a prime and k is a member, then k-1 is also a member, and k!/k# - 1 is the same as (k-1)!/(k-1)# - 1. See A049421. - Jeppe Stig Nielsen, Aug 12 2024
LINKS
Chris Caldwell, Compositorial
Chris Caldwell, Compositorial list search
FORMULA
n such that n!/n# - 1 is prime, where n# is the primorial function n# = product(i = 1 .. pi(n), prime(i)), where pi(n) is the prime counting function.
EXAMPLE
7!/7# = 5040/210 = 24. 24 - 1 = 23, which is prime.
MATHEMATICA
Select[Range[16], PrimeQ[#!/(Times@@Prime[Range[PrimePi[#]]]) - 1] &] (* Alonso del Arte, Nov 28 2014 *)
PROG
(PARI) g(n) = for(x=4, n, y=x!/primorial(x)-1; z=nextprime(y+1); if(ispseudoprime(y), print1(x", ")))
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Cino Hilliard, May 25 2008
EXTENSIONS
a(18)-a(27) from Giovanni Resta, Mar 28 2013
a(28)-a(30) from Giovanni Resta, Apr 02 2013
a(31) from Roger Karpin, Nov 28 2014
a(32)-a(33) from Daniel Heuer, ca Aug 2000
a(34)-a(35) from Serge Batalov, Feb 09 2015
STATUS
approved