The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140164 Binomial transform of [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, ...]. 2
 1, 2, 4, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 194, 200, 206, 212, 218, 224, 230, 236, 242, 248, 254, 260, 266, 272, 278, 284, 290, 296, 302, 308, 314, 320, 326 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sum of antidiagonal terms of the following arithmetic array:   1,  1,  1,  1,  1,  1,  1,  1, ...   1,  2,  3,  4,  5,  6,  7,  8, ...   1,  3,  5,  7,  9, 11, 13, 15, ...   1,  4,  7, 10, 13, 16, 19, 22, ...   1,  5,  9, 13, 17, 21, 25, 29, ...   1,  6, 11, 16, 21, 26, 31, 36, ...   1,  7, 13, 19, 25, 31, 37, 43, ...   1,  8, 15, 22, 29, 36, 43, 50, ...   ... For [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, -55, ...], see A??????. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA Binomial transform of [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, -55,...]; where A028387 = (1, 5, 11, 19, 29, 41,...), such that A028387(n) = (2*T(n) - 1). From R. J. Mathar, May 03 2010: (Start) G.f.: x*(1+x^2+2*x^3+2*x^4)/(1-x)^2. [G.f. amended by Georg Fischer, May 12 2019] a(n) = A016933(n-2), n>2. (End) a(n) = 2*(3n-5), n >= 3, if offset is 0 instead of 1. - Daniel Forgues, Jul 17 2016 EXAMPLE a(4) = 8 = (1, 3, 3, 1) dot (1, 1, 1, 1) = (1 + 3 + 3 + 1). a(5) = 14 = (4 + 5 + 4 + 1). MAPLE From R. J. Mathar, May 03 2010: (Start) A028387 := proc(n) option remember; if n <= 2 then op(n+1, [1, 5, 11]) ; else 3*procname(n-1)-3*procname(n-2)+procname(n-3) ; end if; end proc: read("transforms") ; L := [1, 1, 1, 1, -1, seq((-1)^(n+1)*A028387(n), n=0..60)]; BINOMIAL(L) ; (End) MATHEMATICA Table[If[n < 4, 2^(n - 1), 6 n - 16], {n, 60}] (* or *) Rest@CoefficientList[Series[x*(1+x^2+2x^3+2x^4)/(1-x)^2, {x, 0, 60}], x] (* Michael De Vlieger, Jul 18 2016 *) PROG (PARI) a(n)=if(n<4, 2^(n-1), 6*n-16) \\ Charles R Greathouse IV, Jul 17 2016 (MAGMA) R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( x*(1+x^2+2*x^3+2*x^4)/(1-x)^2 )); // G. C. Greubel, May 12 2019 (Sage) (x*(1+x^2+2*x^3+2*x^4)/(1-x)^2).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019 (GAP) Concatenation([1, 2, 4], List([4..60], n-> 6*n-16)) # G. C. Greubel, May 12 2019 CROSSREFS Cf. A028387. Sequence in context: A294065 A248845 A169926 * A160730 A190402 A175300 Adjacent sequences:  A140161 A140162 A140163 * A140165 A140166 A140167 KEYWORD nonn,easy AUTHOR Gary W. Adamson, May 10 2008 EXTENSIONS More terms from R. J. Mathar, May 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)