login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140164
Binomial transform of [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, ...].
2
1, 2, 4, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 194, 200, 206, 212, 218, 224, 230, 236, 242, 248, 254, 260, 266, 272, 278, 284, 290, 296, 302, 308, 314, 320, 326
OFFSET
1,2
COMMENTS
Sum of antidiagonal terms of the following arithmetic array:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 5, 7, 9, 11, 13, 15, ...
1, 4, 7, 10, 13, 16, 19, 22, ...
1, 5, 9, 13, 17, 21, 25, 29, ...
1, 6, 11, 16, 21, 26, 31, 36, ...
1, 7, 13, 19, 25, 31, 37, 43, ...
1, 8, 15, 22, 29, 36, 43, 50, ...
...
For [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, -55, ...], see A??????.
FORMULA
Binomial transform of [1, 1, 1, 1, -1, -1, 5, -11, 19, -29, 41, -55,...]; where A028387 = (1, 5, 11, 19, 29, 41,...), such that A028387(n) = (2*T(n) - 1).
From R. J. Mathar, May 03 2010: (Start)
G.f.: x*(1+x^2+2*x^3+2*x^4)/(1-x)^2. [G.f. amended by Georg Fischer, May 12 2019]
a(n) = A016933(n-2), n>2. (End)
a(n) = 2*(3n-5), n >= 3, if offset is 0 instead of 1. - Daniel Forgues, Jul 17 2016
EXAMPLE
a(4) = 8 = (1, 3, 3, 1) dot (1, 1, 1, 1) = (1 + 3 + 3 + 1).
a(5) = 14 = (4 + 5 + 4 + 1).
MAPLE
From R. J. Mathar, May 03 2010: (Start)
A028387 := proc(n) option remember; if n <= 2 then op(n+1, [1, 5, 11]) ; else 3*procname(n-1)-3*procname(n-2)+procname(n-3) ; end if; end proc:
read("transforms") ; L := [1, 1, 1, 1, -1, seq((-1)^(n+1)*A028387(n), n=0..60)]; BINOMIAL(L) ; (End)
MATHEMATICA
Table[If[n < 4, 2^(n - 1), 6 n - 16], {n, 60}] (* or *)
Rest@CoefficientList[Series[x*(1+x^2+2x^3+2x^4)/(1-x)^2, {x, 0, 60}], x] (* Michael De Vlieger, Jul 18 2016 *)
PROG
(PARI) a(n)=if(n<4, 2^(n-1), 6*n-16) \\ Charles R Greathouse IV, Jul 17 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( x*(1+x^2+2*x^3+2*x^4)/(1-x)^2 )); // G. C. Greubel, May 12 2019
(Sage) (x*(1+x^2+2*x^3+2*x^4)/(1-x)^2).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
(GAP) Concatenation([1, 2, 4], List([4..60], n-> 6*n-16)); # G. C. Greubel, May 12 2019
CROSSREFS
Cf. A028387.
Sequence in context: A248845 A370047 A169926 * A160730 A190402 A175300
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, May 10 2008
EXTENSIONS
More terms from R. J. Mathar, May 03 2010
STATUS
approved